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ABSTRACT 

In general, spectroradiometers measure the spectral characteristics of crop canopies – 
reflectance, transmittance and absorption of incoming radiation. Historically, simple 
vegetation indices have been derived from 2 wavebands within the visible and infra-red parts 
of the spectrum.  This ‘vegetation index’ does correlate with crop parameters but it is hoped 
that using much larger numbers of wavebands (hyperspectral spectroradiometry) that more 
accurate determination of crop characteristics could be obtained.  Quantification of these 
hyperspectral characteristics enables a ‘spectral signature’ of the crop to be obtained.  These 
spectral signatures can then be related to crop canopy size. This report provides an overview 
of the SPARTAN project (SPectral Analysis Relating To Nitrogen and disease) which aimed 
to evaluate the use of in-field spectroradiometry to distinguish variation within canopies of 
winter wheat as an aid to crop management decisions.  

Work within the SPARTAN project aimed to evaluate 1) whether crop characteristics can be 
discriminated with hyperspectral data; 2) whether use of hyperspectral data can improve on 
the use of vegetation indices such as NDVI.  The main emphasis of the project was on the 
determination of differences in crop canopy size due to nitrogen fertiliser input.  Within the 
SPARTAN project, hyperspectral data were obtained using an in-field, hand-held 
spectroradiometer measuring in the range 350 – 850 nm.   

The project has demonstrated that simple reflectance measurements such as NDVI, although 
they can be correlated with crop characteristics, are limited in their value.  Hyperspectral 
measurements offer greater scope for determining crop characteristics beyond the range 
obtainable using simple vegetation indices.  The project has demonstrated that good estimates 
of canopy size can be obtained during the period when major decisions on nitrogen, plant 
growth regulators and fungicides are made.  The relationship between spectral reflectance and 
canopy size offers the opportunity to develop automatic, routine measurement of crop 
canopies which can be incorporated into simple models which can be used to generate 
application maps.  Factors such as soil background colour and type, varietal colour and 
architecture, which can interfere with the data acquisition, were investigated and found 
generally to be manageable within the range of crop growth stages required for management 
purposes.  Investigation of factors such as the angle of view of the sensor and the effects of 
shading on crop spectral signatures were carried out and again, no major constraints to using 
the technology were found.  The basis of simple models which could be incorporated into a 
spatially variable input system for on-farm use is described.    

Spectroradiometry technology is rapidly developing and coupled with our scientific 
understanding of crop growth and development, offers a real opportunity to develop a routine, 
accurate and inexpensive crop monitoring system.  The project has demonstrated that crop 
characteristics such as canopy size could be determined remotely. The use of 
spectroradiometry, either as tractor mounted, air-borne or satellite-borne sensors could thus 
be of real value in crop management in the near future.  
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SUMMARY 
HGCA-funded research has shown that the requirement of many crop inputs such as nitrogen, 
fungicides and plant growth regulators is related to the ‘state’ of the crop.  Crop 
characteristics such as plant number and the size of the canopy, measured as green area index 
(GAI) are important to helping optimise crop inputs such as nitrogen, fungicides and plant 
growth regulators.  However, these crop characteristics are currently very difficult to measure 
and to define spatially within a field. Details of the research on which this concept is based 
are outlined in the following two Project Reports: 
 
HGCA Project Report No. 151 
Assessments of wheat growth to support its production and improvement 
Volume I (The wheat growth digest; Methods for in-field crop assessment; Forecasting crop 
progress for wheat) 
Volume II (How to run a reference crop)  
 
HGCA Project Report No. 166  (pages 64 – 102) 
Matching crop management to growth and yield potential.  
 
 
The SPARTAN project aimed to further develop some of the key concepts described in the 
Project Reports, particularly that of routine remote measurement of canopy size and nitrogen 
content.  
 

If crop characteristics could be measured remotely and routinely then crop managers would 
be able to make more rational decisions on crop input requirements, particularly where there 
is a large degree of within-field variability in the crop. 

Spectroradiometers measure the spectral characteristics of crop canopies – usually the 
reflectance of incoming radiation (light).  These characteristics, particularly the reflectance of 
light, enable a spectral signature or ‘fingerprint’ of the crop to be obtained.  This can then be 
related to crop structure, size and health status. However, there are factors which may disrupt 
or interfere with the spectral reflectance of the crop including weather conditions (especially 
light levels), soil colour and texture and varietal characteristics.   
 

1  Canopy size and crop inputs 
Crop canopy size has a marked effect not only on the use of nitrogen but also on the use of 
plant growth regulators and fungicides.  Optimising canopy size across a field not only gives 
a canopy size optimal for light interception, often by reducing the amount of nitrogen applied, 
it also reduces the risk of crop lodging and disease risk.  It is important to avoid crop lodging 
and disease as they both reduce yield and grain quality. Thus, optimising crop nitrogen 
applications has many benefits, not only on crop inputs such as nitrogen, plant growth 
regulators and fungicides.  Because, by definition, it optimises crop nitrogen use it should 
also reduce nitrogen leaching into the environment.  Because most crops have canopy size 
variation within the field, the ability to measure canopy size spatially using spectral signature 
would allow the adjustment of many crop inputs. 
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Figure 1  Typical decision making periods for inputs of nitrogen, fungicides and plant growth 
regulators in a wheat crop 

2  Remote sensing of crops 

The practice of precision agriculture involving spatially variable application of crop inputs 
requires the deployment of accurate and reliable crop monitoring techniques to provide 
information on the spatial variations in key agronomic parameters. A potentially valuable 
source of information on the state of the crop canopy is offered by remote sensing using air-
borne and satellite-borne sensors.  High resolution systems are imminent and commercial 
services will soon be available in the UK.  Re-visit times have reduced considerably but the 
major limitation of optical systems is still the cloud cover which restricts image acquisition.  
The use of synthetic aperture radar offers some longer term hope of 24 hour coverage.  
Optical images can be integrated with other ‘sensed’ information or spatial data about crops 
or fields. 

 

3  Factors interfering with hyperspectral data interpretation 

Spectral measurements made in the field depend not only on the characteristics of the surface 
being measured, but also critically on the instrumental configuration and procedure applied in 
the measurement and on the illumination conditions at the time. These extraneous factors are 
particularly important in monitoring crops because the foliage is viewed against a contrasting 
soil background and the instrument configuration affects the relative impact of these two 
components in the measurement. The relationship between sunlit and shaded measurements 
has been established within the project and it has been shown that it is possible to convert 
between them with reasonable accuracy. With wide-angle measurements it is clear that there 
is a relationship with measurements made using a standard narrow field of view 
configuration, but that relationship has not been established with sufficient precision for 
application in all areas. However, this limitation is less critical to the establishment of sensing 
techniques in precision farming: it affects the ability to apply the findings of previous studies 
directly.  What is important is that both wide and narrow field of view measurements exhibit 
similar relationships with key canopy parameters. Functional relationships established in 
previous studies with narrow field of view instruments can be expected to apply with wide 
field of view.  This theoretically gives us reasonable flexibility in helping to design a tractor-
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mounted sensor as the angle of view of the sensor could be accounted for using these 
relationships.  

The issue of whether hyperspectral measurements taken when the crop is in full sun or is 
shaded by cloud has been addressed and it appears that it is possible to account for this with 
reasonable accuracy. There is clearly considerable flexibility in the time window around solar 
noon that measurements can be taken – a serious practical issue that could affect the number 
of crops in which measurements could be taken during a single day. 

Differences between varieties in terms of colour and plant architecture were potential 
confounding factors when taking spectral measurements of wheat canopies.  However, with 
either NDVI or hyperspectral data, differences between varieties at early growth stages 
(GS30-32) were found to be either small or absent.  As varieties developed their full canopy 
size, differences affecting spectral reflectance became more apparent.  Thus, measurements 
taken later in crop growth would be confounded by varietal differences and some 
compensation would need to be made to adjust for such differences.  However, the use of 
spectral reflectance to determine canopy size would be used during the very early growth 
stages of wheat (GS30-31) so varietal differences would not be expected to confound the 
spectral reflectance measurements at this stage.  

 

4 Canopy size determination throughout the growth of the crop. The use of NDVI and 
hyperspectral signatures 

The project has shown that there is a clear relationship between NDVI and LAI but also that 
the relationship changes through the growing season, particularly as the canopy size (LAI) 
changes.  At the start of the growing season there is a linear relationship between LAI and 
NDVI.  Later in the season, after about a LAI of 2.5 is reached, the relationship plateaus and 
it is no longer possible to predict LAI with NDVI alone. The linear relationship between 
NDVI and LAI up to a LAI of 2.5 is useful in managing nitrogen applications and some crop 
protection inputs.  The main nitrogen applications would be applied during this period of crop 
growth, as would the plant growth regulator applications.  The first fungicide application 
would also be applied during this period of crop growth and an estimate of LAI could be a 
useful tool in helping decision making. Principal components analysis of the hyperspectral 
reflectance data found five factors of importance in summarising the variation in the spectral 
data.   A stepwise multiple regression of these factors with LAI found a highly significant 
relationship which is generally linear and therefore can potentially predict LAI over the range 
0.5-4.0 rather than only up to 2.5 as seen by the extent of the linear part of the relationship 
between LAI and NDVI. 

 

5  Farm machinery technologies and application maps 
On-board computer systems such as AGCOs ‘Fieldstar’ have a significant role in helping to 
develop canopy measurement technology because they provide the farmer with the tools to 
measure and manage inputs.  Inputs such as seed, fertiliser and crop protection products can 
be varied within a field and matched to canopy size. Such computer systems also allow the 
opportunity to farmers to automate the process of creating field records providing them with 
traceability information. 
The ability to variably apply nitrogen and crop protection inputs relies on having a map of the 
treatable area showing the variability in the factor which affects the crop input.  Canopy size 
is one key factor which affects many key inputs.  The project has shown how such canopy 
maps could be used in simple models to help in managing crop inputs.  The ability to measure 
and map variation in canopy size across fields would allow the generation of application maps 
for many crop protection inputs. 
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6  Applying the technology on farm 

There are many practical issues that would need to be addressed before this technology could 
be applied in practice.  These include: 

a.  The angle of view of the sensors.  This determines the size of the ‘footprint’ (the area of 
crop ‘seen’ by the sensor.  The decision on sensor view angle is a compromise as this would 
also determine the number of sensors required. 

b.  The mounting of the sensors.  Sensors could be tractor-mounted or boom-mounted.  This 
has great implications because boom mounted sensors could be orientated to have a vertical 
view of the crop.  This is the conventional view of sensors on aircraft, satellites and hand held 
sensors used in this project.  If sensors were to mounted on a tractor they would have to be 
non-vertical, having an oblique view of the canopy.  The implications of such mounting 
would be significant and further work would be needed to re-test the hypotheses.  

c.  The minimum number of wavebands that need to be included in any sensor array. 

Many farms need to invest in computer systems and software that would allow them to handle 
and integrate the types of spatial data that will become available in the near future. 

 

7  Integration of data acquisition systems 

In the future most benefit is likely to be gained by incorporating information sets derived 
from a number of sources.  No single dataset is likely to meet all of the requirements of the 
farmer.  Tractor mounted systems offer the greatest flexibility in that they will rarely be 
constrained by the weather.  However, air-borne and satellite-borne sensors offer large scale 
image acquisition which offers ‘directed scouting’ opportunities together with whole field or 
whole farm maps showing large scale changes such as soil variation. CropStar is an example 
of a satellite mission designed specifically to meet the needs of precision agriculture. With 11 
wavebands selected for the retrieval of crop biophysical parameters it should be possible to 
provide high-value information products to aid decision making and help in spatially applying 
crop inputs. 
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1.  BACKGROUND  
 
1.1 Use of spectroradiometry in crop management  
 
If crop characteristics could be measured remotely and routinely then crop managers would 
be able to make more rational decisions on crop input requirements, particularly where there 
is a large degree of within-field variability in the crop.  Spectroradiometers measure the 
spectral characteristics of crop canopies – usually the reflectance of incoming radiation 
(light).  These characteristics, particularly the reflectance of light, enable a spectral signature 
or ‘fingerprint’ of the crop to be obtained.  This can then potentially be related to crop 
structure, size and health status, all of which could aid crop management decisions. There are, 
however, many factors which may disrupt or interfere with the spectral reflectance of the crop 
including weather conditions (especially light levels), soil colour and texture and varietal 
characteristics.  Many of these factors are investigated within the project. 

  

1.2 Crop management decisions in the wheat crop 

Many decisions made on the husbandry of the wheat crop are at present crude; the crop is 
only taken into account in a qualitative way, if at all. HGCA funded research has shown that 
optimal applications of fertiliser, fungicides and other pesticides are affected by the crop state 
(Bryson et al, 1995, 1997a,b; Clare et al, 1996; Clark & Bryson, 1997; Sylvester-Bradley et 
al, 1995).  The research methods used to quantify crop state are very laborious, frequently 
involved destructive sampling and therefore are not realistically adoptable by farmers and 
advisers.  Some of the crop characteristics that have been identified as particularly important 
are: canopy size and structure, proportion of healthy and diseased leaf area and shoot density.   

Of the crop characteristics above, canopy size is probably the most important as it affects so 
many crop inputs.  ADAS and The University of Nottingham have developed a management 
principle to achieve target canopy sizes to optimise crop performance.  Canopy size is defined 
by the Green Area Index (GAI).  For example, a GAI of 3 refers to a crop within one square 
metre of ground having the total area of all its green tissues (one side only) measuring 3 
square metres. 

Optimum canopy size can be achieved by first managing the plant stand, through appropriate 
adjustment of seed rate, then by the manipulation of the amount and timing of nitrogen 
applications to give the necessary number of shoots.  Nitrogen management aims to control 
the expansion of the green canopy to achieve full light interception during the yield forming 
period (normally from late May to the end of July).  This technique has the advantage over 
conventional nitrogen management as it constantly allows adjustments to be made as the 
canopy develops, moving towards a defined target canopy size.  Conventional nitrogen 
management makes assumptions at the beginning of spring growth based on soil type, 
previous cropping and frequently the expected yield of the crop. Under the canopy 
management approach, compared to conventional N management, the aim is for canopy 
expansion to be reduced but canopy survival to be enhanced (see Fig. 1.1). 

Key Points of Canopy Management: 

• It is important to achieve a GAI of 3 as early in May as possible 

• The aim is for the canopy to reach a maximum of GAI 6.5 by GS59. 

• Application of ‘late’ nitrogen to maintain the canopy size throughout the grain filling 
period. 
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Figure 1.1  Canopy development in canopy-managed wheat (canopy N)  

compared with conventionally managed wheat (normal N). 
 
In crops with smaller canopies, the lower leaves (leaf 3 and 4) contribute more to yield and 
therefore need better protection from disease than in thicker crops.  However, the spread of 
foliar disease within the crop is often slower. 

Crop canopy size has a marked effect not only on the use of nitrogen but also on the use of 
plant growth regulators and fungicides.  Optimising canopy size across a field not only gives 
a canopy size optimal for light interception, often by reducing the amount of nitrogen applied, 
it also reduces the risk of crop lodging and disease risk.  It is important to avoid crop lodging 
and disease as they both reduce yield and grain quality. Thus, optimising crop nitrogen 
applications has many benefits, not only on crop inputs such as nitrogen, plant growth 
regulators and fungicides.  Because, by definition, it optimises crop nitrogen use it should 
also reduce nitrogen leaching into the environment.  Because most crops have canopy size 
variation within the field, the ability to measure canopy size spatially using spectral signature 
would allow the adjustment of many crop inputs. 
 

Measurement of Canopy Size 
In order to apply the principles of canopy management throughout the season, canopy size 
must be measured.  Various techniques have been developed to estimate canopy size 
including visual assessment from keys, tiller counting and ground cover estimate.  These 
techniques vary in their accuracy and even if they were very accurate they still suffer from the 
problem that they do not take into account canopy size variation in different parts of a field.  
One of the key aims of this project is to enable canopy size to be mapped automatically and 
routinely using spectral signatures to quantify canopy size.  This would allow the generation 
of GAI maps of fields that would then give information to apply not only nitrogen, but also 
plant growth regulators and fungicides. 
 

1.3  Use of remotely sensed data in monitoring agricultural systems 

The practice of precision agriculture involving spatially variable application of crop inputs 
requires the deployment of accurate and reliable crop monitoring techniques to provide 
information on the spatial variations in key agronomic parameters. A potentially valuable 
source of information on the state of the crop canopy is offered by remote sensing. Spectral 
measurements of the land surface made by earth observation satellites date back to the launch 
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of Landsat 1 in 1972. The measurements derived from Landsat and its successors have shown 
the ability of remote sensing techniques to measure the status of growing vegetation at all 
scales, from the continental scale down to the local scales of variation within arable field. For 
example Steven and Millar (1997) showed that spectral indices derived from SPOT satellite 
data were able to account for about half of the within-field variance of yield in a variety of 
crops, while analysis of the spatial interdependence of the spectral and yield variations 
suggested that certain stress effects in crops could be distinguished from variations in plant 
density. With time, advances in both data sources and processing techniques are improving 
the level of information that can be derived by remote sensing, and hence increasing the 
potential value to the grower. 
 
1.3.1  Vegetation Indices 
 
The basis of the most well developed remote sensing techniques for monitoring arable crops 
is the vegetation index. This is an algebraic construction based on the contrast between the 
near-infrared waveband (which is strongly reflected by vegetation) and a visible band (usually 
red, which is strongly absorbed by plant chlorophyll). When viewing a vegetation canopy 
against a background of bare soil, the vegetation index provides a powerful measure of the 
density of the canopy, expressed as leaf area index, or better as the fractional interception of 
photosynthetically active radiation (Steven et al., 1983). This approach has been widely tested 
across a range of agricultural crops (e.g. Daughtry et al., 1992; Casanova, Epema and 
Goudriaan, 1998) and is sufficiently accurate to be applied operationally in the prediction of 
crop yield (Jaggard and Clark, 1990; De Koeijer et al., 2000).  The ideal formulation of the 
vegetation index is a matter of some debate. The most widely used version is the Normalised 
Difference Vegetation Index (Tucker, 1979), but this index has also been widely criticised for 
its sensitivity to soil background. However, considerable progress has been made in revised 
formulations of vegetation index to correct for variations due to soil colour (Huete, 1988).  
Rondeaux, Steven and Baret, (1996) provides a comparative review of  a range of these 
indices while Steven (1998) evaluated index sensitivity to a range of environmental and 
observational variables. 
 
1.3.2 Advanced parameter retrieval 
 
Although vegetation indices can indicate important variations within a crop and are often well 
correlated with important biophysical parameters, they are very much ‘data products’ (as 
opposed to ‘information products’) and require a great deal of interpretation by the grower if 
they are to be used for decision support. For this reason a number of academic institutions and 
commercial companies have been developing techniques to retrieve more meaningful crop 
parameters from remotely sensed data (airborne, tractor-mounted and satellite) over the last 
ten years, with a view to providing information with a genuine commercial value to the 
grower.  Parameters such as Leaf Area Index (LAI), chlorophyll concentration and biomass 
can be estimated through modelling the interaction of incident light with specific crop 
canopies (insert refs esp Jacquemoud & Baret). In turn these parameters have been used in 
conjunction with agronomic models to produce user-friendly maps of anomalies, risk, and 
even input recommendations for the grower.  This approach generally requires more advanced 
sources of data (such as ‘superspectral’ visible/near infrared data or high resolution 
polarimetric SAR data) which are not readily available from current satellite systems, so 
current applications are relatively small-scale and are based on airborne or tractor-mounted 
data sources. Commercially speaking, this type of crop monitoring is in the pre-operational or 
market introduction phase, and within Europe there are planned satellite missions and tractor-
mounted initiatives that aim to make this more widely available over the next few years. 
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1.3.3.  Constraints on monitoring 
 
The ability of satellite sensors to monitor the status of arable crops is not simply defined by 
the ability to measure a distinct signal. Consideration must also be given to the scale or spatial 
resolution of observation, the detail of spectral information (spectral resolution) required of 
the observations and the frequency with which the observations are made (temporal 
resolution) through the growing season.  Table 1 shows the range of current and future 
planned satellite missions (some of which are designed specifically for the precision 
agriculture market) which will significantly relieve many of the constraints imposed by 
current satellites if they come to fruition. 
 

 1.3.4.  Spatial resolution 

 
The size of objects that can be measured on the surface is limited by the spatial resolution of 
the instrument. This is formally defined as the instantaneous field of view (IFOV) of the 
instrument as projected onto the earth’s surface: less formally it is usually identified with the 
pixel size, which for most (but not all) satellite observing systems is approximately the same 
as the IFOV.  For large-scale agricultural monitoring the spatial resolution must be high 
enough to distinguish individual fields, so that in Western Europe a spatial resolution of about 
100m would normally be sufficient. A large number of satellite instruments are available to 
provide this (Table 1). However for Precision Agriculture, the spatial scale of interest is finer, 
requiring a spatial resolution of about 10m or better. The study by Steven and Millar (1997) 
used 20m resolution data from the SPOT satellite which is usually sufficient to distinguish 
problem areas associated with soil physical properties, but too coarse to identify small patches 
(1-2m) of stressed plants, which may be associated with the early development of disease 
(Blakeman, 1990). Only the most recent satellites offer a capability approaching this level; for 
example IKONOS can image areas at a spatial resolution of 4 metres in three bands or 1m in 
panchromatic mode. An alternative for applications that require very high resolution imagery 
(and an option which currently offers better timeliness than VHR satellites) is airborne crop 
monitoring. Given a sufficient number of fields in a particular region, airborne remote sensing 
of arable crops can be commercially viable, and carries the advantage of being able to use 
advanced instruments that are not yet available on satellite platforms. Such services were 
introduced in France in 2001, are available from a number of providers in North America, and 
are being piloted in the UK in 2002. 

 1.3.5.  Spectral resolution 

 
The ability to measure plant characteristics by remote sensing depends critically on the 
specific wavebands used, and the precision with which those characteristics can be measured 
depends on the number and narrowness of the bands – termed the spectral resolution of the 
instrument. Systems like Landsat, SPOT and IKONOS have a few relatively broad wavebands 
(7, 4 and 3 respectively) centred on the main regions of interest for vegetation monitoring. 
However, greater spectral detail is potentially of importance in measuring biochemical 
concentrations in plant canopies (Curran, Dungan and Peterson, 2001) and for monitoring 
stress responses in crops (Steven et al., 1990). Several imaging spectrometers that would be 
able to deliver such data are in an advanced state of development, including Hyperion, a 220-
band instrument recently launched on the EO-1 satellite (Table 1). For an operational system 
for growers, a compromise may be necessary in terms of spectral resolution (trade-offs with 
spatial and temporal resolution), such as that proposed for the CropStar system, which is 
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described as ‘superspectral,’ having around 11 bands of intermediate bandwidth, chosen 
specifically for retrieving crop parameters 

 1.3.6.  Temporal resolution 

 
In monitoring arable crops, it is also essential to consider the frequency with which repeated 
observations can be made through the growing season (Steven, 1993; Moran, 2000). This 
factor is determined by the orbital parameters of the satellite, the angular width of the 
instrument and the cloudiness of the region of operation. Current satellites such as Landsat or 
SPOT that are designed for observation of the land surface are typically in polar orbits that 
overpass a given site on the earth’s surface every 15 to 30 days. The ability to acquire data 
can be increased to some extent by using multiple satellites or, with some systems, by 
pointing the satellite sensor at the target. However, even when a site can be targeted more 
frequently, in the UK cloud cover often restricts the practical imaging opportunities. Moran 
(2000) specifies a revisit requirement of one week to meet the user information requirements 
of agricultural management. Clearly, satellites such as SPOT, Landsat and IKONOS were not 
designed to meet the needs of arable crop monitoring, so their usefulness to the grower is 
limited to applications that are not very time-critical. Companies planning to address the 
precision agriculture market by remote sensing are aware of the timeliness issue, and have 
adopted various approaches to tackling it, including pairs of wide-swath instruments in 
complementary orbits, constellations of ‘small-sats,’ airborne data sources, Synthetic 
Aperture Radar, and tractor-mounted systems. 
 
1.3.7.  Synthetic Aperture Radar 
 
Synthetic Aperture Radar (SAR) is able to penetrate cloud cover and operate both day and 
night, so has clear advantages in terms of temporal resolution over satellite systems. SAR is 
sensitive to different influences than optical data (crop structure/bulk and leaf/soil moisture as 
opposed to leaf chemistry) but recent studies have shown potential to provide valuable 
information for precision agriculture (Anon 2001). SAR imagery is already available from 
satellite platforms, but not with a spatial resolution or information content that is very useful 
for precision agriculture.  Research is under way in Europe (the ‘ISOCrop’ project, under EC 
Framework V, using X and L-band polarimetric SAR data from an airborne platform) with 
the aim of establishing retrieval techniques for parameters such as biomass, canopy moisture 
and surface soil moisture, in preparation for exploiting planned SAR satellite missions (e.g. 
TerraSAR). The status of SAR capabilities is some years behind the optical techniques, but it 
is felt that SAR has an important role to play in certain parts of the world, perhaps providing 
the temporal reliability within an integrated optical/SAR service to growers. 
 
1.3.8.  Choice of observation systems  
 
Increases in spatial, spectral and temporal resolution all imply an increasing demand for data. 
In the practical design of satellite observing systems, there is a limit to the amount of data that 
can be handled, which in turn implies that there is a fundamental trade-off between the 
spatial, spectral and temporal resolutions available from a given system (Steven, 1993). Thus, 
systems with high spatial resolution tend to offer only limited information in the spectral 
domain and are usually severely limited in terms of the frequency and timing of data 
acquisition. Optimal trade-offs are therefore being designed specifically for precision 
agriculture (e.g. Xstar). While current satellite-borne imaging spectrometers can offer a 
detailed spectral analysis of an extensive region of the earth, they have limitations for 
precision farming operations because their return time is inevitably long. This indicates that 
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current satellite data may be useful as a strategic tool to provide information on within-field 
variability for future planning, but that data acquisition is not sufficiently reliable at least in 
Western Europe, for tactical monitoring where the information is used to guide management 
operations on a specific crop.  Tractor-mounted sensors are well suited to fill this gap as the 
data acquisition is much less dependent on weather, the measurements may be made when the 
tractor is in the field for other purposes and the information is readily accessible to the farmer 
without the need to wait for processing by a third party. It may also be an advantage that the 
data acquired are available only to the farmer concerned and not to others. However, any 
application of measurements made from tractors must take into account the particular 
problems of this mode of measurement, such as the variable viewing angle, reliance on field 
soil conditions to allow travelling, variable illumination, non-specialist operation, the 
tendency toward a ‘black-box’ approach and not least, capital cost. Airborne systems are also 
available which provide the necessary spatial, spectral and temporal resolutions for precision 
agriculture. Airborne systems have their own inherent complications, not least the need to 
cover a large area in a given region to make the system cost-effective, but some of these 
systems are operated as precursors to future optical and SAR satellite-based services. The 
relative merits of observing systems vary by specific precision farming applications, and 
ultimately the choice comes down to which system can be exploited to give the widest range 
of cost benefits to a particular user. 
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Table 1.  Satellite observation systems suitable for agricultural monitoring 
CURRENT MISSIONS 
 
Platform/Sensor Agricultural Applications No. of 

Bands  
Polarisation Spatial 

Resolution 
Swath Revisit period 

(days) / with 
selective targeting 

 
Landsat 7 / ETM+ 

Landsat was designed for general land 
observation purposes but has some applications 
to agriculture due to a reasonably well suited 
range of bands; - crop type distinction and 
mapping, vegetation health and moisture, soil 
moisture studies and plant heat stress 
measurement. However applications to precision 
farming are limited due to spatial resolution and 
effective revisit period allowing for cloud cover. 
Furthermore, for truly high-value information 
extraction there are insufficient spectral 
channels. 

7 
 
- 3 VIS 
- 1 NIR 
- 2 SWIR 
- 1 TIR 
( - PAN    
2,3,4) 

N/A 60m (TIR) 
30m (MS) 
10m (Pan) 

185km 16 

SPOT 4 / HRV Unlike its predecessors (SPOT 1-3) SPOT 4 has 
a SWIR sensor specifically included for 
agricultural classification. However, applications 
to precision agriculture are limited by the  
spectral content  and the effective revisit period 
of 26 days. The maximum orbit repeat period of 
2-3 days comes with the cost of selective 
targeting at the expense of other areas, and 
competition with other users. 

4 or Pan 
 
- 3 VIS 
- 1 SWIR 

N/A 20m (MS) 
10m (Pan) 

60km 26 / 2-3  

IRS / LISS -III This sensor is designed for landcover and land-
use, as part of the IRS programme to support 
natural resources. Although slightly more 
spectrally diverse in the IR region than SPOT 4, 
this sensor is still limited due to its lengthy 
revisit period. 

4 or Pan 
 
- 2 VIS 
- 1 NIR 
- 1 MWIR  

N/A 23m (MS) 
6m (Pan) 

140km 22 
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Platform/Sensor Agricultural Applications No. of 

Bands  
Polarisation Spatial 

Resolution 
Swath Revisit period 

(days) / with 
selective targeting 

IKONOS IKONOS, the first high-resolution commercial 
satellite was launched in 1999 and uses four 
bands equivalent to Landsat bands 1-4, making it 
potentially applicable to simple precision 
farming products. However, practical constraints 
make it very difficult to acquire timely imagery. 
The maximum revisit period of 1.5 days can only 
be achieved for a single target at 40º latitude 
within an 11km swath, which is totally 
inappropriate for studying large areas of 
agricultural land on a frequent basis, and data are 
costly. 

4 or Pan 
 
- 3 VIS 
- 1NIR 

N/A 4m (MS) 
1m (Pan) 

11km 142 / 1.5 at 40º 
latitude 

QUICKBIRD QUICKBIRD, also operating in four bands 
offers better still resolution than IKONOS but 
suffers from the same constraints, narrow swath 
and high costs. 

4 or Pan 
 
-3 VIS 
- 1NIR 

N/A 2.5m (MS) 
0.6 (Pan) 

16.5km 0.5 - 1 

RADARSAT-1 RADARSAT SAR data has shown some success 
in basic crop mapping, rice monitoring and 
providing information on crop condition and 
within field variability. SAR data also the 
obvious advantage of not being limited by cloud 
cover. However the maximum resolution of 8m 
is only available with a swath of 50km, which 
reduces the effective revisit. The amount of 
agricultural information in also limited by the 
systems restriction to C band and HH 
polarisation. Furthermore, after necessary 
processing the effective resolution of thematic 
products is substantially reduced.  

1 (C) HH 8m –100m 50 – 500km 24 
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IMMINENT MISSIONS 
 
Platform/Sensor Agricultural Applications No. of 

Bands  
Polarisation Spatial 

Resolution 
Swath Revisit period 

(days) / with 
selective targeting 

ENVISAT / 
ASAR 

Of the different instruments on board ENVISAT, 
launched successfully in March 2002, ASAR has 
the most potential for applications in agriculture 
at production level. The ‘alternating polarisation 
mode’ can produce to two images of the same 
scene in different polarisation combinations, 
which may prove a useful research tool in 
preparing for future SAR missions. However it is 
not expected to be a suitable data source for 
routine services to growers due to resolution, the 
restriction to C-band, and revisit period. 

1 (C) HH/VV or 
HH/HV or 
VV/VH 

< 30m  100km 35 

SPOT 5 /HRV SPOT 5, to be launched in may this year, offers 
further improved resolution over SPOT 4, but 
has the same associated limitations with respect 
to precision agriculture. The arrival of SPOT 5 
makes 3 SPOT satellites available for 
programming, so it may be feasible to offer some 
kind of immediate service for precision farming 
with reasonable timeliness using all three.   

4 or Pan N/A 10m (MS) 
20m (SWIR) 
2.5 & 5m (Pan) 

60km 26 / 2-3 
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FUTURE MISSIONS 
 
Platform/Sensor Agricultural Applications No. of 

Bands  
Polarisation Spatial 

Resolution 
Swath Revisit period 

(days) / with 
selective targeting 

RADARSAT-2 RADARSAT-2 will offer polarimetric SAR 
imagery of unprecedented resolution when 
launched in 2003. The additional polarisation 
will enable differentiation between soil and 
vegetation thus providing more information on 
ground conditions than RADARSAT-1. Results 
however will still be limited, as this system will 
also only operate in C-band, and when operating 
in ‘ultra-fine’ resolution mode the swath will be 
severely limited to 20km. Final product 
resolution will also be reduced with processing. 

1 (C) HH, VV, HV, 
VH 

3 – 100m  20-500km 24 

TerraSAR TerraSAR is likely to be realised through a 
combination of an ESA-managed 
implementation (L) and a German national 
contribution (X) by 2005/2006. The dual band 
and multi-polarisation capability, coupled with 
the high spatial resolution, is expected to hold 
potential for providing valuable crop parameter 
information. This information may be integrated 
into a service also using optical-based products 

X & L X – HH VV 
L – Quad Pol  

3-6m X 
5-9m L 
(Stripmap 
mode) 

40km 
(Stripmap 
mode) 

11 days 
(same look 
direction) 

CropStar CropStar is an example of a satellite mission 
designed specifically to meet the needs of 
precision agriculture. With 11 channels selected 
for the retrieval of crop biophysical parameters it 
should be possible to provide high-value 
information products. This service is already 
operational over limited areas of Europe, based 
on airborne data. Furthermore, with 2 or 3 wide-
swath satellites in complementary orbits a short 
revisit time should be achievable. 

11 
(Vis/NIR) 

N/A 10-20m 320km (each 
satellite) 

2-3 days 
(without 
programming) 
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 1.4  Project aims and scientific objectives 

The main emphasis of this project is the remote determination of crop canopy size using 
hyperspectral reflectance data obtained using a hand-held, in-field spectroradiometer.  The 
overall objective of the project is to identify key signatures of wheat crops indicative of 
canopy size, structure and composition due to nutrient input and disease.  Within this overall 
objective, there are several constituent objectives: 

1) To identify differences in winter wheat spectral signatures due to crop nitrogen status and 
related crop structure. 

2) To carry out spectral component analysis of the spectral signatures of contrasting disease 
epidemics by manipulating the crop with nitrogen and by applying differential fungicide 
spray regimes.  

3) To concentrate the study on two economically important and biologically contrasting 
foliar pathogens, Septoria tritici and yellow rust (Puccinia striiformis). 

4) To evaluate changes in the spectral signatures of crops under stress due to drought, weed 
competition or pest attack. 

5) To identify any practical problems in interpretation of the spectral signature.  Factors such 
as crop size, soil type and moisture and incident radiation (bright v dull days) will be 
identified which may affect the spectral signature of the crop. 

6) From the results of spectral component analysis key spectral signatures indicative of 
individual crop conditions would be identified. 

7) To incorporate the spectral signatures of crop parameters into a simple model and assess 
the feasibility of using it to improve crop management decisions by farmers and advisers. 

Investigations were carried out to meet each of the specific objectives.  Field experiments 
concentrated on obtaining data on hyperspectral reflectance signatures of crops of a range of 
varieties and canopy size. 
 
1.5  Methodology, instrumentation and data pre-processing 
 
1.5.1  Spectral measurements 
High-resolution spectral irradiance measurements were taken using a LICOR LI-1800 (Li-
Cor, inc. Lincoln, Nebraska, USA) scanning spectroradiometer over visible and near-infrared 
wavelengths (350 to 850 nm).  The measurements of both incident (sensor pointing up) and 
reflected (sensor pointing down) radiation were made at 1 or 2 nm intervals with a cosine 
corrected head held horizontally 50 cm above the target surface.  In most experiments on each 
plot and sampling occasion reflectance from the crop was measured four times and this was 
preceded and followed by a measurement of incident irradiance.  In the field mapping 
experiments only single crop reflectance measurements were made to allow a larger area to be 
mapped. 
 
  When possible the measurements were made under conditions of stable incoming solar 
radiation, ideally under clear cloud free skies.  This aim was not always achieved due to 
changes in weather during the length of time required to complete measurements on all 
replicate plots.  This problem and the large quantity of data involved resulted in significant 
time being spent in data processing to ensure that only valid reflectance calculations were 
made. The stability of incoming radiation was assessed from time course of total incoming 
radiation obtained by integrating irradiance under each of the incoming spectral response 
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curves after applying appropriate calibrations.  This allowed simple separation of periods of 
stable and unstable solar radiation.  A further check was made using the ratio of amounts of 
solar radiation in ten specified wavebands to total solar radiation to aid the detection of any 
transient changes in irradiance.  Final checks were made by comparing graphs of the replicate 
reflected spectra with the incoming radiation before and after the measurements on a plot. 
Comparison of measurements between stable and unstable periods showed the major cause of 
variation in reflected radiation between replicate measurements over our relatively uniform 
crops was variation in incoming radiation. Thus in stable periods the nearest in time incoming 
radiation was used for reflectance calculations.  In less stable periods after removing incident 
measurements showing unstable spectra, remaining reflected measurements were matched to 
appropriate incident spectra by assuming changes occurred in parallel and the reflectances 
calculated.  All valid reflectances for a plot were averaged at each wavelength and the mean 
used for further analysis. 
 
1.5.2  Plant Canopy Analyser (PCA) measurements 
In these experiments a Plant Canopy Analyser (PCA, LAI-2000, Li-Cor inc. Lincoln, 
Nebraska, USA) was often used to estimate green area index (GAI) of crop canopies rather 
than the more traditional destructive measurements.  It estimates GAI from light 
measurements above and below the canopies at five solid angles using a hemispherical cosine 
corrected sensor, using calculations according to Campbell and Norman, 1988. 
 
 
Reference 
 
Campbell, G.S. 1988, The description and measurement of plant canopy structure.  In: Plant 

Canopies: their Growth, Form and Function (G. Russell, B Marshall and P.G. Jarvis, 
eds.).  pp. 1-19. Society for experimental Biology Seminar Series 29, Cambridge 
University Press. 

 
 
 
 
The following five sections describe the investigations carried out to identify practical issues 
associated with use of hyperspectral reflectance to monitor crops: Section 2 investigates the 
effects of soils on sensing of crops and Section 3 the effect of spectroradiometer angle of 
view and illumination effects on spectral measurements.  Section 4 reports the results on 
differences in spectral characteristics with different varieties of winter wheat.  In Section 5, 
the relationship between spectral characteristics and canopy size is investigated and the 
difference between the use of hyperspectral data and vegetation indices is evaluated.  Section 
6 provides a discussion of the project findings, their implications for improved crop 
management and a discussion of the use of data from current and future satellite platforms for 
crop management. 
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2.  THE EFFECT OF SOILS ON REMOTE SENSING OF CROPS 
  

 2.1  Introduction 

The specific objective of this part of the project was to investigate the effect of soil in 
interfering with the spectral signal from the crop canopy.  This work meets the specific 
objective of identifying practical problems in interpretation of the spectral signature.  In this 
report section the effect of soil type and moisture are evaluated using information from 
experimental work and existing scientific literature. 

Many of the applications of remote sensing to the land surface are associated with 
classification of the type of surface observed. The assumption is that the surface is a discrete 
entity that may be distinguished from neighbouring surfaces of different types.  The remote 
sensing of crops differs from this kind of problem in that the surface observed represents a 
continuum of conditions from a few emergent seedlings to a closed green canopy, to a 
senescent crop. The plants and their condition are observed against a background of soil and 
the field of view of a remote sensor contains a mixture of both components. The problem is to 
extract the information about the status of the crop against this background. While this 
introduces difficulties associated with variability in signal associated with the brightness and 
colour of the background soil, it is also the factor that enables measurement of the size of the 
canopy. Figure 2.1 shows typical spectra of a soil and of winter wheat with a range of leaf 
area indices, measured in the course of this project. The dramatic contrast between the spectra 
of soil and foliage brings about a systematic evolution of the canopy spectrum with LAI. This 
change in reflectance with crop growth is particularly marked in the red and near-infrared 
bands and allows spectral measurements to be used to measure the density of foliage. 

 

 2.2  Soil spectra 

The reflectance spectrum of soil is somewhat variable and creates problems in the 
interpretation of canopy reflectance spectra. Typical spectra measured in the course of this 
project are shown in figure 2.2. Variations in brightness and colour between soils are 
associated with the fractional content of organic matter, which darkens the soil and iron 
oxides, which give soils a reddish hue (Escadafal, 1993). Huete and Escadafal, (1991) 
suggested that the spectra of dry soils could be characterised by a linear mixture of four 
“basis” curves or eigenspectra, broadly representing overall brightness, iron oxides, organic 
constituents and goethite, a yellow, reduced form of iron oxide. The first of these components 
alone represented all but 1.87% of the spectral variation in the soils measured. An Atlas of 
soil reflectance values was presented by Stoner et al., (1980), representing several hundred 
soils across the USA. In general, the reflectance curves under controlled conditions for 
different soils are similar in shape (as indicated by the results of Huete and Escadafel, 1991) 
but differ in magnitude by as much as a factor of 5 or 6 (e.g. Escadafal, 1993). If soil type 
were the only source of variation in soil, it would be sufficient for the purposes of agricultural 
management to produce a similar Atlas of UK soils. However, for a particular soil type, 
variations in brightness are also caused by surface wetness and roughness, both of which have 
the effect of darkening the soil (Baret, Jacquemoud and Hanocq, 1993; Jacquemoud, Baret 
and Hanocq, 1993; Bausch, 1993; Rondeaux, Steven and Baret, 1996). The magnitude of the 
effect is about a factor of 2, depending on soil type, usually with slightly more change for 
wetness than for roughness. The roughness effect, which is caused by self-shading of the 
surface, is also a function of solar and viewing angles (Cierniewski and Courault, 1993).  

 

 2.3  Soil Adjusted Vegetation indices  
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The idea of a "vegetation index" was developed to express the systematic change in spectral 
response of vegetation canopies with leaf area. The ratio of near-infrared to red reflectance is 
perhaps the simplest index, but the most widely used is the "normalised difference vegetation 
index", defined as: 

 NDVI = (ρIR - ρR)/(ρIR + ρR) 

where ρIR and ρR are measured reflectance values in the near-infrared and red bands respectively. 
Functionally, the NDVI is identical to the simple ratio (one can be transformed directly into the 
other), but has the computational advantage that its values are restricted to the range -1 to +1. 

Although it primarily responds to a combination of leaf area and leaf angle, the NDVI is also 
sensitive to a range of other factors, particularly soil background colour. This means that its 
response to vegetation parameters will not be universal and quite large errors in estimation of 
canopy size may occur. To assess this effect, Huete, Jackson and Post (1985) performed 
experiments to measure the near infrared and red spectral responses of potted plants arranged to 
give a known fraction of ground cover, with varying soil backgrounds. Huete (1988) 
subsequently developed a "soil adjusted vegetation index" (SAVI), which reduces the effect of 
soil background to a minimum while retaining the vegetation response. The definition of SAVI 
is: 

 SAVI = (1+L)(ρIR - ρR)/(ρIR + ρR + L) 

where L is an empirical constant taken by Huete to be 0.5. The basis for this approach is that the 
relationship between near-infrared and visible reflectance for soils is characterised by a single 
straight line and that the effect of the growing crop can be measured by the departure from this 
line, expressed either as the Euclidean distance or as an angular difference (Baret, 1995). 
Mathematically, SAVI is an angular index, but with the origin of the red and near-infrared axes 
shifted to negative values (figure 2.3).  Subsequent authors have suggested several other values 
for the constant L, while Baret and Guyot (1991) derived a generalised formulation (TSAVI) in 
terms of the slope and intercept of the soil line. A comparison of soil adjusted indices was 
presented by Rondeaux, Steven and Baret, (1996), who tested a range of L values and found an 
optimum value of 0.16. There is probably no ideal value of L and the difference between L values 
found by different authors may in part be due to differing sets of soil data used to develop the 
index. In fact any of the soil-adjusted indices are a considerable improvement on NDVI. For 
example, Bausch (1993) found that SAVI corrected effectively for the effects of soil moisture. 
Steven (1998) simulated the residual sensitivity of OSAVI, (the index with L = 0.16) to factors 
such as sun angle, satellite viewing angle, atmospheric effects etc. The result of this analysis was 
that with an appropriate soil adjustment, vegetation indices can be used to estimate fractional 
ground cover to an error of about ±5%. 

 

 2.4  The limiting point of soil interference 

If crop canopy spectra are to be used to estimate canopy variables other than size, an issue to 
consider is the point in time through the growing season at which soil ceases to significantly 
affect the signal. It can be seen from Figure 2.1 that the soil spectrum is rapidly 
overshadowed by the effect of the overlying vegetation and the vegetation signal “saturates”, 
or approaches an asymptotic value at large values of LAI (Tucker, 1977). In this project, this 
concept has been applied explicitly in the analysis of the effects of field of view and shading 
(see section 3). A “pure foliage” spectrum was estimated by extrapolating the spectral values 
at each wavelength to an estimated value at 100% ground cover. For the purpose of 
estimating the limiting point of soil interference, the critical value was assumed to be the 
point at which 95% of the evolution from the soil spectrum to the “pure foliage” spectrum had 
taken place. This value, ρcrit, which also takes the form of a spectrum, was calculated simply 
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as the weighted average of the pure foliage and soil spectra (weighted in the ratio 0.95:0.05). 
The limiting values Lcrit corresponding to this spectrum were calculated using the fitted curve 
between the measured spectral data and estimated ground cover that had been used to 
estimate the pure vegetation spectrum. First the value of crop cover corresponding to ρcrit was 
calculated by inverting the equation. Then Lcrit was calculated from the assumed relation 
between crop cover and L (Section 3). The values derived from the measurements made at 
ADAS Terrington on 23 May 2001 are shown in figure 2.4. The vegetation signal saturates at 
an LAI of 2-3 in the visible part of the spectrum and 5-6 in the near-infrared. The difference 
arises because leaves are partly transparent in the near-infrared, causing the signal to change 
over a greater range of values. Values of Lcrit were derived for both the narrow and wide field 
of view probes used in that study: differences are minimal in the visible, but near-infrared 
values of Lcrit are slightly lower for the wider field of view, because the effective leaf area 
seen by the instrument at the larger angles is greater than when viewing directly down. The 
analysis breaks down in the red-edge region (ca. 730-750 nm) because the vegetation and soil 
spectra cross and the assumption of evolution of one spectrum into another no longer holds. 

 

An extension to this analysis is to consider the effect of varying the brightness of the soil 
background. For this purpose, the soil spectrum measured at ADAS Terrington (which was 
dry at the time) was adjusted by a factor of 2 to simulate brighter and darker soils. This 
conversion is reasonable and realistic because of the similarity in shape of soil curves noted 
above. The 2 x ADAS Terrington case can be regarded as a simulation of a much brighter 
soil, possibly dry chalk, while the 0.5 x ADAS Terrington case can be regarded as simulating 
ADAS Terrington in the wet. The values of Lcrit were computed as before and are shown in 
figure 2.5. The effect of the darker soil is for Lcrit to reach a value of about 4 across the whole 
spectrum. The effect of the brighter soil is for the spectrum to saturate at an Lcrit of 2 or less in 
the visible region, but only at a value of about 8 in the near-infrared. The analysis breaks 
down in the red-edge region, as before. These results should be interpreted with caution 
because while the calculation of Lcrit for these simulated soils takes account of the change in 
ρcrit, it does not allow for changes with soil brightness in the relationship between canopy 
reflectance and ground cover when estimating the matching value of L. However, since the 
95% point is close to the value for the pure vegetation spectrum, which should be insensitive 
to soil, the errors involved in this approximation should be minor. 

 

 2.5  Generalisation of the soil adjustment approach 

The effects of soil on the crop reflectance spectrum affects hyperspectral data in just the same 
way as it affects simpler measurements made in 2 or 3 bands. It is therefore relevant to 
determine whether the SAVI approach can be generalised to deal with all wavelengths. The 
success of this approach depends (1) on the use of one spectral band to act as a reference 
point for another; (2) on the plot of corresponding soil reflectance values at the two 
wavelengths falling in a straight line and; (3) on the relationships between reflectance values 
at the two wavelengths with different soils for different ground covers being at least 
approximate straight lines that converge to a common point as in figure 2.3.  

 Baret, (1995) showed that the soil line concept applied to most soils in the red and near-
infrared domain and with some restrictions in the middle infrared. The near-linear forms of 
the spectra in figure 2.2 also support this. Baret presented soil line equations for a series of 
paired wavelengths representing SPOT HRV and Landsat TM bands. The TSAVI approach 
(Baret and Guyot, 1991), in which the slopes and intercepts of these lines are used explicitly 
to generate the index, provides a direct means of applying the correction. Although no full 
hyperspectral experiment on vegetation canopies against varying soil backgrounds has been 
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reported to date, it is reasonable to expect linearity and convergence across the spectrum as 
shown in figure 2.3, because the red and near-infrared wavelengths already in use represent 
the extremes of difference between vegetation and soil. On this basis, the concept of 
generalising the soil adjustment approach to hyperspectral data is promising. However, the 
paired wavelengths cannot be too similar. If a fixed wavelength is used across the spectrum, 
the soil correction will be mathematically undefined at that wavelength and will be prone to 
large errors at neighbouring wavelengths, or indeed at any other wavelength where the 
reflectance properties of vegetation and soil are similar (Baret et al., 1994). One approach 
might be to use a reference wavelength outside the specific region of interest for vegetation 
monitoring, but this would be limiting; an alternative would be to use separate reference 
wavelengths for different regions of the spectrum, the paired regions selected for contrast in 
the soil and vegetation reflectance properties. Further study involving both theoretical 
analysis and spectral measurements on carefully designed experiments is required to evaluate 
this concept.  

 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

400 450 500 550 600 650 700 750 800 850 900 
wavelength nm

R
ef

le
ct

an
ce

 

0.0 
0.6 
1.0 
1.6 
2.1 
2.5 
3.0 

 
 

Figure 2.1: Spectral reflectance as a function of leaf area index. The measurements were made 
with a wide field of view sensor on a nitrogen trial in winter wheat (23/05/01). 
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Figure 2.2: Typical soil spectra from ADAS field sites 
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Figure 2.3 - The basis of the soil adjusted vegetation index: The relationship between near-
infrared and red reflectances for given ground cover is a series of straight lines. 
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Figure 2.4 – Estimation of the critical value of leaf area index for 95% evolution of the 

vegetation canopy spectrum 
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Figure 2.5 – Estimation of the critical value of leaf area index, with simulated soils of double 
and half the original reflectance. 
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3.  THE EFFECT OF ANGLE OF VIEW AND ILLUMINATION ON 
SPECTRAL MEASUREMENTS 

 

 3.1  Introduction 

The specific objective of this part of the project was to determine the degree of interference 
that changes in the angle of view of a crop radiometric sensor and the illumination of the crop 
would have on the practical measurement of crop parameters.  If there are large effects of the 
angle of view and illumination of the crop on spectral measurements then this would have a 
significant impact on both the type of equipment that could be used in practice, and on the 
time of day that the equipment could be used to take crop measurements.   

Spectral measurements made in the field depend not only on the characteristics of the surface 
being measured, but also critically on the instrumental configuration and procedure applied in 
the measurement and on the illumination conditions at the time. These extraneous factors are 
particularly important in monitoring crops because the foliage is viewed against a contrasting 
soil background and the instrument configuration affects the relative impact of these two 
components in the measurement. In the context of the SPARTAN project, it is essential to be 
able to account for the effect of these factors on the measurements, both to allow comparison 
with previous work reported in the literature and to evaluate the implications for sensing 
under operational conditions in the field. This report describes an experimental study to 
investigate the effects of instrument field-of-view and shading on plot spectral measurements. 

 

 3.2  Angles of view 

Conventionally, in remote sensing of vegetation from a satellite or an aircraft, reflected solar 
radiation is received by a scanning detector in a form that allows the reconstruction of an 
image of the scene.  This process requires a very narrow instantaneous field of view (IFOV), 
for example the Landsat TM sensor has an IFOV of about 0.04 milliradians. In addition to the 
narrow IFOV, the data are almost invariably collected in bright sunlight, as the presence of 
cloud would obscure the target. Most published data on the spectral characteristics of growing 
canopies have been collected under bright sunlight conditions and with a relatively narrow 
IFOV for the purpose of understanding and validating satellite remote sensing systems.  

In the SPARTAN project, spectral measurements have been made with the Licor LI-1800 
equipped with a fibre optic attachment ending in a cosine-corrected receptor with a 
hemispherical field of view (IFOV = 2π radians). When looking up, such a configuration 
provides a view that encompasses the sun and the entire sky, weighted so as to give an 
unbiased measurement of the total incoming solar irradiance. For field measurements this 
configuration has the advantage that the amount of light collected is greater and therefore the 
signal is more stable. Reflectance is also measured directly, using an upward-looking 
measurement of the total solar irradiance as the reference, whereas instruments with a narrow 
IFOV have to be referred to a measurement on a reference surface, which requires special 
calibration. However, when looking down, the light reflected from the canopy has different 
characteristics at different viewing angles. (This phenomenon is formally described by the 
“bidirectional reflectance distribution function” or BRDF, which in vegetation is largely 
controlled by the relative fractions of soil and foliage visible in a given direction). At large 
incidence angles the scene will appear to be fully vegetated, even when LAI is small, whereas 
the nadir (vertically downward) view will show more soil. Using the cosine-corrected head 
gives an IFOV that mixes these different components of the BRDF and may even include 
some signal from neighbouring plots. To avoid these problems, field instruments used to 
simulate remote sensing are normally designed to restrict the field of view to 20° or less, over 
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which range the variations in the BRDF are small. To account for variations in illumination 
during measurement, reference measurements are made on a calibrated surface, usually a 
white panel of known characteristics. The vegetation reflectance value determined by this 
method is known as the bi-conical reflectance and differs from the bi-hemispherical 
measurement in that it refers only to a single direction of view. 

An operational tractor-mounted spectral sensing system could be designed with either narrow 
or wide IFOV. It is conceivable that a wide IFOV system might be deliberately selected in 
order to increase sensitivity to variations in foliage pigmentation while reducing the 
sensitivity to soil. However, in order to interpret the SPARTAN measurements in a way that 
allows them to be used to predict the responses of satellite or similar instruments, or to relate 
SPARTAN data to previous studies in the literature, it is necessary to compare the wide-angle 
and narrow-angle responses directly. 

 

3.3  Illumination effects 

Measurements made in the field may also be critically affected by the directional 
characteristics of the source of illumination. Under a clean, cloudless sky, the direct solar 
beam is generally the source of over 80% of the illumination (Monteith and Unsworth, 1990), 
and provided that measurements are restricted to the period 2-3 hours either side of solar noon 
(in summer), the angle of illumination is not a major source of variation. However, 
measurements made earlier or later, when the sun is lower in the sky, may exhibit 
considerable variations. In particular, the near-infrared, which is strongly reflected by 
vegetation, will tend to be exaggerated relative to other parts of the spectrum, because more 
of the light is intercepted by the foliage and less by the soil. Also, when the sun is obscured 
by cloud, the illumination is totally diffuse and emanates from all regions of the sky. Roughly 
half of the diffuse illumination comes from elevations greater than 45°. Vertical illumination 
penetrates more effectively to the soil and the spectral characteristics measured will tend to be 
less weighted towards the near-infrared. Conversely, the half of the diffuse illumination that 
comes from lower elevations will tend to emphasise the near-infrared. The differences caused 
by these effects depend both on the leaf area index (with a maximum in the LAI range 1-3) 
and on the leaf angle distribution, being greater for vertical leaves and less for horizontal 
leaves. The effect will also depend on the solar elevation and on the spectral characteristics of 
the soil relative to those of the vegetation. Empirical measurements are required to quantify 
the effects for particular crops. 

 

3.4  Materials and Methods 

Field studies were conducted on 3 April and 23 May 2001 with the following objectives: to 
measure the effects of field of view and diffuse illumination geometry on the spectral 
signature. The sky conditions on the first date were overcast and all data were collected with 
diffuse light only. On the second date, the conditions were sunny with only occasional 
patches of cirrus. 

 

3.4.1.  Instrumentation 

All measurements were made with a Licor LI-1800 spectroradiometer. To investigate the 
effects of field of view, an aperture restrictor device was constructed to fit over the sensor 
head of the spectroradiometer. The device consisted of an aluminium block with a cylindrical 
hole designed to sit directly over the cosine head of the LI-1800. The hole was threaded and 
painted black to reduce internal reflections and the outer aperture formed by a washer of 
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slightly smaller diameter. The length of the hole was 23mm and the orifice diameter 12.3mm, 
giving a 15° half-angle IFOV at the centre of the sensing surface. Taking into account the 
diameter of the cosine head (7.3mm) at its base, the device restricted the uptake of light to a 
cone of half-angle approximately 23°. The device was secured in place by a rubber band, 
which facilitated rapid change from hemispherical to restricted view. Due to concern about 
the reduction in signal with the field restrictor, a second Licor LI-1800 spectroradiometer was 
borrowed from the University of Nottingham School of Life and Environmental Science. The 
Nottingham instrument had a narrow IFOV probe (full angle approximately 5°) mounted on 
the end of a 2m fibre optic bundle. The two instruments were used in parallel on the first field 
study (3 April 2001). Spectral measurements were made from 400 to 850nm, sampled at 
intervals of 2nm. The spectral resolution of the LI-1800, as represented by the band width at 
half-power is about 6 nm, so this scanning procedure oversamples by a factor of 3. The time 
taken for a scan is about one minute. A PTFE panel was used as the field reference for the 
narrow IFOV measurements with both instruments; the PTFE panel was calibrated to Barium 
Sulphate in the laboratory and a standard reflectance curve for Barium Sulphate used to 
determine absolute reflectance. The reference measurements correct for any spectral 
variations in the incoming solar radiation, but do not account for the geometry of 
illumination. 

To investigate illumination geometry, a shading device approximately 1.5 x 1.5m was made 
of white cotton fabric supported on two poles.  

 

3.4.2.  Experimental procedure 

The SPARTAN Nitrogen trial plots were selected for this study in order to provide a wide 
range of canopy covers on a single date. The general protocol was for a sequence of wide-
angle measurements to be made followed immediately by a sequence of field-restricted 
measurements and their respective reference measurements for the same field plot. Four sets 
of repeat measurements were made at evenly spaced locations in each plot. Two reference 
measurements of the appropriate type were made for each set of four target measurements. 
The whole sequence was conducted as rapidly as possible to minimise changes of 
illumination with time.  

 

Measurements on 3 April 2001 

Measurements were made with the ADAS Licor LI-1800 using both the wide angle and 
narrow angle probes and with the Nottingham Licor LI-1800 with its narrow angle probe. 
Conditions were cloudy, so it was not necessary to deploy the shading device. Poor weather 
restricted the number of measurements possible and only Plot 6 was measured. However, 
Nitrogen fertiliser had only recently been applied to the trial and no differences between plots 
were yet apparent. 

Measurements on 23 May 2001 

Comparison of the Nottingham and ADAS Licor instruments on 3 April indicated that the 
signal was adequate with the field restrictor on the ADAS instrument, so that the backup 
Nottingham instrument was unnecessary. Measurements on 23 May were made on Plots 1 to 
10, with alternate series of wide-angle measurements, narrow angle measurements with the 
field restrictor and measurements of a shaded canopy with the field restrictor. Separate 
measurements of the reference panel were also made with and without the shading device. 

 

3.5  Results 
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Figure 3.1 shows the comparison of spectra measured over plot 6 on 3 April 2001 when Leaf 
area index was 0.3. The spectra measured with narrow IFOV by both ADAS and Nottingham 
instruments are very similar and the difference between them is well within the margin of 
error (5-10% of signal) associated with varying light conditions on that day. Measurements 
with the wide IFOV cosine head however are substantially higher in the near-infrared and 
correspondingly lower in the visible. This result supports the prediction that wide-angle 
measurements sense a greater proportion of leaf relative to soil. 
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Figure 3.1: Spectral measurements on 3 April 2001 (Plot 6) 

 

The results of 23 May indicate a similar behaviour. Table 3.1 shows the leaf area indices of 
the plots, together with an estimate of ground cover based on LAI and the Normalised 
difference vegetation index (NDVI) determined from values of spectral reflectance ρ at 
800nm (IR) and 680nm (red), measured with the narrow IFOV. The formula for NDVI is as 
follows 

  NDVI = (ρIR – ρred)/ (ρIR + ρred)      (1) 

 

where the reflectance values were in this case averages of 30nm about the nominal 
wavelength. Percentage ground cover C% was estimated as 

 

  C% = 100 (1 – exp(-0.7 LAI))      (2) 
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where 0.7 is a leaf area projection coefficient typical of cereal crops (Monteith and Unsworth, 
1990). NDVI is closely correlated with ground cover with all measurement configurations 
(figure 3.2). The values converge at high cover density and the slope is shallower with the 
cosine and the shaded measurements, but there is no loss in the ability of the index to predict 
cover. 
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Figure 3.2: The effect of measurement configuration on NDVI as a function of crop cover 
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Table 3.1: Plot characteristics on 23 May 2001 

Plot LAI 

(Green) 

LAI 

(Total) 

% cover NDVI 

1 2.5 2.5 83 0.93 

2 2.0 2.1 76 0.89 

3 1.9 2.0 76 0.84 

4 2.1 2.2 78 0.87 

5 3.0 3.0 88 0.92 

6 1.6 1.6 68 0.83 

7 2.9 2.9 87 0.91 

8 0.6 0.6 36 0.42 

9 2.1 2.1 78 0.90 

10 0.9 1.0 51 0.67 

 

The measured spectra for the plots are shown in figure 3.3. As predicted, all the spectra show 
more exaggerated vegetation characteristics (higher near-infrared and lower visible 
reflectance) with the cosine head than with the field restrictor. The spectral response with the 
field restrictor with the crop shaded also shows an exaggerated vegetation response relative to 
the sunlit case, but to a somewhat lesser extent. The high frequency data fluctuations, 
particularly at the extremes of the wavelength range in the shaded spectra, are due to 
instrumental noise, which becomes more important when light levels are reduced by 
restricting the field of view or by shading. 

 

When the shaded and cosine head measurements are normalised with respect to the 
measurements made with the field restrictor (figure 3.4), the spectra measured with the cosine 
head show the distinct spectral signature of vegetation even after normalisation, whereas the 
shaded measurements show little pattern in the normalised spectrum, except for a small 
increase in the near-infrared. When examined individually by plot, the cosine-measured 
spectra are clearly ranked according to leaf area. The shaded measurements appear to show a 
weaker form of the same behaviour, but the differences tend to be masked by noise. 
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23 May 2001: Plot 2 comparisons
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23 May 2001: Plot 3 comparisons
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23 May 2001: Plot 4 comparisons
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23 May 2001: Plot 5 comparisons

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

400 450 500 550 600 650 700 750 800 850 900
wavelength nm

re
fle

ct
an

ce

Cosine
Restricted
Shaded

23 May 2001: Plot 6 comparisons
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Figure 3.3: Spectral measurements of field plots using different configurations 
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23 May 2001: Plot 7 comparisons
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23 May 2001: Plot 8 comparisons
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23 May 2001: Plot 9 comparisons
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23 May 2001: Plot 10 comparisons
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Figure 3 (cont.): Spectral measurements of field plots using different configurations 
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Figure 3.4: Spectral data normalised to restricted field values: average over all plots 
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To make a systematic assessment of the differences in spectral behaviour with measurement 
conditions, four representative wavelengths were selected. Values at 500, 550, 680 and 
800nm were chosen, representing the main troughs and peaks in the vegetation spectrum. To 
reduce the effect of noise, the average across a 30nm band centred on the nominal wavelength 
was used. Figure 3.5 shows the functional dependence of reflectance on LAI at 800nm with 
the three measurement configurations. About two thirds of the variance in reflectance is 
explained by a linear relationship with LAI, and while the slope of the line is steeper with the 
cosine head, the coefficient of determination is about 4% lower. The results at the other 
wavelengths selected show similarly strong relationships with LAI, but the relationships are 
less linear, the slopes in the visible bands are negative and the curves are not so well 
separated. 
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Figure 3.5: Reflectance at 800nm with leaf area, for different measurement configurations 
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3.6  Theoretical Analysis 

The effect of instrument IFOV and shading can be modelled in terms of what the instrument 
“sees” with each configuration. If we assume that the surface consists of three components: 

 

Leaf - with reflectance ρL, occupying a fraction fL of the scene 

Soil - with reflectance ρS, occupying a fraction fS 

Shade - areas (of leaf or soil) with reflectance 0, occupying a fraction f0 

 

where  fL  + fS  + f0  = 1            (3) 

 

The conventional (narrow IFOV) measurement can then be expressed as 

 

V = ρL fL + ρS fS           (4) 

 

Assume that to a first approximation, ρL and ρS are independent of viewing angle. Increasing 
IFOV will always increase fL  relative to fS, because larger angles decrease the chance of light 
penetrating through the canopy from the soil and at some angle towards the horizon, the soil 
ceases to be visible. Therefore, we can suppose that the wide IFOV measurement can be 
approximated as a weighted average of the value measured at nadir by a narrow IFOV 
instrument and a signal dominated entirely by foliage, i.e. ρL. For the wide IFOV cosine head 
measurement, the value measured then becomes 

 

V’ = Ω(ρL fL + ρS fS) + (1 – Ω)βρL  = ΩV + (1 – Ω)βρL       (5) 

 

Where Ω is a coefficient (≤ 1) that accounts for the relative weights of the nadir and the large 
angle component. The coefficient β (also ≤ 1) is applied to ρL to account for the fact that the 
view towards the horizon contains a component of shade, so that the signal from this region is 
less than would be obtained purely from foliage. β also accounts for systematic error in the 
value of ρL which is derived empirically. Equation 5 can then be expressed as 

 

V’/ ρL = ΩV/ρL  + (1 – Ω)β         (6) 

 

In principle, this formulation separates the wavelength dependence in V, V’ and ρL from the 
angular dependence which is incorporated in the coefficients Ω and β. A plot of V’/ ρL against 
V/ρL  should give a straight line from which Ω and β can be determined from the slope and 
intercept. 
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Estimation of a pure foliage spectrum 

A problem remains in that ρL is not precisely known. For the purposes of this study, an 
estimate was made by fitting the measured reflectance values as a function of percentage 
ground cover (c%). This was performed separately at each 2nm wavelength λ from 400 to 
850nm. By trial and error it was found that the wide angle measurements yielded an estimate 
of ρL that performed better in subsequent analysis than that derived from the narrow IFOV 
data. The function that was fitted to the data took the following form: 

 

V’(λ) = αλ exp(γλ (100-c%))         (7) 
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Figure 3.6: Comparison of normalised values for wide and narrow IFOV 

 

Although linear regression also gave good statistics of fit, extrapolation to 100% cover 
sometimes gave negative reflectance values and the exponential form was found to be more 
realistic. Some experiments were also performed to test whether extrapolation to cover values 
beyond 100% might give a more ideal spectrum, but it was found that the spectra generated 
this way had unrealistically low reflectance values around 670nm and that this had a biasing 
effect on subsequent analysis. The fitted value of αλ was therefore selected, corresponding to 
the extrapolated value at 100% estimated cover. This spectrum is listed in Appendix A.  
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Reconstruction of spectra  
Figure 3.6 shows the effect of normalising the wide and narrow IFOV measurements to the 
value of ρL estimated by αλ. When the values are plotted the result approaches a straight line 
as predicted by equation 6, although it is apparent that normalisation does not account for all 
of the wavelength dependence. The results are better for the analysis of shading (figure 3.7), 
where the graph indicates little residual spectral dependence. Regression analysis of the data 
from the individual plots indicated no significant dependence of slope and intercept on leaf 
area index, whether for the analysis of angle or shade effects. Average values of these 
coefficients were therefore used in the subsequent analysis. 
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Figure 3.7: Comparison of normalised values for shaded and sunlit spectra 

 

The test of this analysis is to use the coefficients determined from the slopes and intercepts in 
figures 3.6 and 3.7 to reconstruct spectra as measured in the standard configuration (narrow 
IFOV, sunlit) from measurements made under non-standard conditions (wide IFOV, or 
narrow IFOV in shade). Inversion of equation 5 gives 

 

V = V’/Ω - (1 – Ω)βρL/Ω  or 

V  = V’/m - k ρL/m          (8) 

 

Where m and k are the mean slope and intercept respectively of these relationships (Table 
3.2). The results of this analysis are shown for selected plots in figures 3.8 and 3.9.  
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Figure 3.8: Reconstruction of standard configuration measurement for plot 5, where “from” 
indicates a reconstruction of the measured “restricted” spectrum. 
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Figure 3.9: Reconstructions for plot 10 - details as figure 3.8 

 

In general, the results show that the standard conditions can be reproduced reasonably well 
from the shaded measurements, but there are larger errors when attempting to convert from 
wide IFOV to narrow IFOV, particularly when LAI is low (plots 8 and 10 in this analysis). 
These errors are most apparent in the near-infrared, because the values are larger, but the 
relative errors are in fact broadly uniform across the spectrum (figure 3.10). The relative 
errors for estimating from wide IFOV are about ±20%, while estimation from shade is 
typically ±10-15%. 
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Figure 3.10  : Relative error of reconstructed narrow-IFOV data from wide angle 
measurements 

 

Table 3.2: Mean values of spectral reconstruction coefficients  

 

3.7  Discussion 

The theoretical analysis outlined in equations 5 to 8 above has been described in terms of the 
comparison of wide and narrow angle measurements and it has been implicitly assumed that 
the same mathematics should apply to shaded versus sunlit measurements. The justification 
for this is that the effect of changing from effectively a single illumination angle in sunlight, 
to a full hemisphere of diffuse illumination in shade is mathematically equivalent to the 
change from a single direction of view to a wide angle incorporating all directions. This 
equivalence is enshrined in the principle of reciprocity which states that the probability of a 
beam of light passing from A to B through some medium (the canopy in this case) is the same 
as the reverse probability of passing from B to A. The difference in practice here is that the 
single direction of view is vertical whereas the single direction of the UK summer sun is some 
30-40° from the zenith; and that the diffuse illumination is not uniform in direction and its 
spectrum varies from that of the sun. These differences affect the coefficients, but not the 
fundamental geometry expressed in the equations. However, the descriptive terms applied to 

 m k 

From 
Cosine 

0.775 0.440 

From 
shade 

0.983 0.173 
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the coefficients should be adjusted to refer to changes in the proportions of vegetation and 
soil illuminated rather than the proportions in the field of view. 

The results of this analysis indicate that reconstruction of standard sunlit spectra from 
measurements made in shade is possible and that reasonable accuracy can be achieved. This 
ability is essential in the context of using tractor mounted sensors for precision farming, 
because the crop must be measured in any weather conditions. The field of view restricting 
device cut the light levels to be measured by a factor of about 20 and the measurements made 
were quite noisy, particularly in shade. It is therefore reasonable to suppose that the intrinsic 
relationship is quite robust and that more precise spectral reconstruction could be achieved 
with a stronger signal. However, reconstruction of standard narrow IFOV measurements from 
wide angle measurements gives a more equivocal answer. Instrumental noise is not a major 
issue in these measurements, but it must be remembered that the wide angle measurements 
necessarily detect a much larger area than the corresponding measurements with the field 
restrictor so that unlike the sunlit versus shade comparisons, the areas seen are not the same. 
This will introduce noise in the LAI rather than the spectral domain.  The plots in figure 6 
show some curvature and spectrally related deviations from the general trend, which suggests 
either that the value of  ρL derived by extrapolation of the data is biased in some respect, or 
that the theory itself is over simplistic. That the theory is partly successful is indicated by the 
closeness of the “from Cos” reconstruction to the “Restricted” curve in figure 3.8, but as 
figure 3.9 shows, the reconstruction can generate not just inaccurate, but unrealistic spectra 
when LAI is low. 

Unfortunately, it was not possible to investigate the effect of shading on measurements made 
with the cosine corrected head; the wide IFOV of the sensor meant that the shading device 
required would be excessively large.  

 

In conclusion, it can be stated that the relationship between sunlit and shaded measurements 
has been established and that it is possible to convert between them with reasonable accuracy. 
There is theoretically some dependence on solar elevation but although the measurements in 
this instance were made from 0959 to 1411 GMT, the variations were not large enough to 
confound the relationships. Further investigation of the sensitivity to this factor can if 
necessary be made using canopy models. With the wide-angle measurements it is clear that 
there is a relationship with measurements made using a standard narrow IFOV configuration, 
but that relationship has not been established with sufficient precision for application. This 
limitation is less critical to the establishment of sensing techniques in precision farming: it 
affects the ability to apply the findings of previous studies directly; but as figure 3.2 
demonstrates, both wide and narrow IFOV measurements exhibit similar relationships with 
key canopy parameters. Functional relationships established in previous studies with narrow 
IFOV instruments can be expected to apply with wide IFOV, but the forms and coefficients of 
these relationships will have to be re-established by experiment.  This theoretically gives us 
reasonable flexibility in helping to design a tractor-mounted sensor as the angle of view of the 
sensor could be accounted for using these relationships.   

 

The development of a tractor-mounted sensor system would have to address the issues of 
angle of view of the sensors (and hence the sensor ‘footprint’) and the height of the sensors 
above the canopy - which would directly affect the number of sensors that would be required 
to give a practical area of crop that could be viewed at a point in time. The issue of whether 
hyperspectral measurements taken when the crop is in full sun or is shaded by cloud has been 
addressed and it appears that it is possible to account for this with reasonable accuracy. There 
is clearly considerable flexibility in the time window around solar noon that measurements 
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can be taken.  This is reassuring as, from a practical point of view, it could have seriously 
reduced the number of crops in which measurements could be taken during a single day. 
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 4.     THE EFFECTS OF VARIETY ON SPECTRAL SIGNATURES OF               
WINTER WHEAT 

 

4.1  Introduction 

The specific objective of this part of the project was to investigate the effect of variety in 
affecting the spectral signal from the crop canopy.  Using spectral reflectance measurements 
to estimate canopy size relies on there being minimal interference from factors which may 
differ between varieties.  Otherwise, variety-specific prediction tools would be required in 
order to predict canopy size from sensed data.   

The main factors that would be expected to have significant effects on spectral reflectance 
are: 

1.  Leaf colour 

2.  Leaf insertion angle 

3.  Leaf position / architecture 

4.  Wax layer of leaf 

5.  Presence of awns 

 

In order to test the range of variables that exist in wheat varieties, five varieties were 
compared to see the effect that such characteristics had on the spectral reflectance.  The 
varieties were specifically chosen to represent the widest range of variability in the above 
characteristics.  The varieties chosen were Avalon, Soissons, Consort, Equinox and 
Shamrock. 

 

Variety Characteristic likely to affect spectral reflectance 

Avalon Large, dark green, floppy (i.e. not erect) flag leaf 

Consort Modern variety, upright flag leaf. 

Equinox Modern wheat type, spikey upright flag leaf. Highly waxed leaf 
giving an apparent blue coloration. 

Shamrock Variety with very low wax cover on leaf giving the variety an 
apparent grass-green colour. 

Soissons Variety with small flag leaf held horizontally, awned ears. 

 

Many of the above characteristics are not apparent throughout the growth of the crop so 
spectral reflectance measurements were taken at key growth stages in the life of the crop.  The 
crop input decisions which might rely on spectral reflectance measurements for canopy 
characterisation are made early in the life of the crop between GS30 and GS32.  Thus, it is 
important that crop canopy characteristics at these growth stages are known.   
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4.2  Materials and Methods 

 

4.2.1.  Experimental design 

A fully randomised block design was used with 3 replicate plots of each of 5 varieties of 
winter wheat (Avalon, Soissons, Consort, Equinox and Shamrock).  Conventional 
agronomy/management practices and same seed rates (375 seeds/m2) were used in order to 
attempt to generate similar canopy sizes.    Foliar disease assessments and percentage green 
area were carried out weekly from GS 31.  Crop canopies were sampled throughout the 
growing season during 1999 and 2000.   

 

4.2.2.  LAI measurements 

In these experiments a Plant Canopy Analyser (PCA, LAI-2000, Li-Cor inc. Lincoln, 
Nebraska, USA) was used to estimate green area index (GAI) of crop canopies rather than the 
more traditional destructive measurements.  It estimates GAI from light measurements above 
and below the canopies at five solid angles using a hemispherical cosine corrected sensor, 
using calculations according to Campbell and Norman, 1988.  Plant canopy measurements 
were taken from mid-March weekly up until GS39, and then every two weeks until leaf 
senescence. 

 

4.2.3.  Spectral measurements 

High-resolution spectral reflectance measurements were taken at 4 points within each plot 
using a LICOR LI-1800 spectroradiometer.  The LICOR LI-1800 is a rapid scanning 
instrument operating over visible and near-infrared wavelengths (350 to 850 nm at 2nm 
intervals).  The LICOR LI-1800 was fitted with a cosine corrected optical head and was held 
at a height of 1m. For each plot and sampling occasion both target radiance (looking directly 
downwards) and incident irradiance (looking directly upwards) were monitored almost 
instantaneously to allow correction of reflectance for varying incident irradiance. The four 
replicate measurements were taken per plot and used to make a mean spectrum corrected for 
incident irradiance that contained 250 wavelength ‘variables’ that could then be used in the 
data analysis.  

When possible the measurements were made under conditions of stable incoming solar 
radiation, ideally under clear, cloud-free skies.  This aim was not always achieved due to 
changes in weather during the length of time required to complete measurements on all 
replicate plots. The stability of incoming radiation was assessed from examining the time-
course of total incoming radiation -  obtained by integrating irradiance under each of the 
incoming spectral response curves after applying appropriate calibrations.  This allowed the 
identification and simple separation of periods of stable and unstable solar radiation.  A 
further check was made using the ratio of amounts of solar radiation in ten specified 
wavebands to total solar radiation to aid the detection of any transient changes in irradiance.  
Final checks were made by comparing graphs of the replicate reflected spectra with the 
incoming radiation before and after the measurements on a plot. Comparison of 
measurements between stable and unstable periods showed the major cause of variation in 
reflected radiation between replicate measurements over our relatively uniform crops was 
variation in incoming radiation. Thus in stable periods the nearest in time incoming radiation 
was used for reflectance calculations.  In less stable periods after removing incident 
measurements showing unstable spectra, remaining reflected measurements were matched to 
appropriate incident spectra by assuming changes occurred in parallel and the reflectances 
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calculated.  All valid reflectances for a plot were averaged at each wavelength and the mean 
used for further analysis. 

 

NDVI, which is defined as:            NDVI = (ρIR - ρR)/(ρIR + ρR) 

 

where ρIR and ρR are measured reflectance values in the near-infrared and red bands respectively 
was calculated using the hyperspectral reflectance data.  The average reflectance over 790-850nm 
was taken as the near-infrared reflectance and the average reflectance over 600-690nm was taken 
as the red reflectance. 

 
4.2.4.  Statistical Analysis 

One-way ANOVA 

The extent to which mean values of NDVI and LAI are significantly different for each of the 
variety groups was analysed one-way ANOVA. 

 
Principal Components Analysis (PCA) 

The analysis of hyperspectral data can be complex because of the simultaneous response of 
250 variables to treatments and because these individual wavelengths are strongly correlated. 
For example, if the spectral reflectance at e.g. 650nm is high, then it is likely that the spectral 
reflectance at 648 and 652 nm will also be high. In statistical terms this is referred to as 
multicollinearity.  A correlation analysis of all the variables together would show many 
variables are correlated with each other.  This fundamental characteristic of the hyperspectral 
data has implications for the nature of the statistical analysis and interpretation of analysis 
results.  First, there is considerable redundancy in the data (the variation in the data set could 
be explained with fewer variables).  Secondly, variables may appear spuriously significant 
because they are correlated with other variables.  In order to deal with issues such as these, 
multivariate statistical methods are required. 

The high degree of multicollinearity present in the hyperspectral reflectance data made it 
necessary to reduce to data to fewer, uncorrelated variables prior to data analysis to detect any 
varietal differences.  PCA provides a means of creating new “variables” that capture the 
maximum amount of variability within the existing data set.  This is achieved by the creation 
of new axes within the existing data space, with the first positioned to capture the greatest 
spread within the data.  The second axis is then defined orthogonally in relation to the first 
and the values for the second principal component for each 10 km grid square are assessed 
from this axis.  Further axis are defined within the data space until the variation within the 
data set explained by an axis drops below a predefined threshold, as measured by the axis’ 
eigenvalue.  

Principal components analysis identifies a new set of uncorrelated variables where each 
variable is a linear combination of the original hyperspectral reflectance wavelengths.  
Because principal components analysis is used where there is a large degree of 
multicollinearity (very high correlations between the variables), it is usually the case that a 
large part of the variation in the original data set can be explained with just a few principal 
components. The wavelength variables that were important in forming the new principal 
component variables is determined by the loadings – these are simple correlations between 
the original wavelength variables and the new principal component variables.  The higher the 
loading the more influential the wavelength variable was in forming the principal component 
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and so the loadings can be used to interpret the meaning of the new variables, or to determine 
the underlying process that they might represent.   

The new variables (factors) resulting from the principal components analysis were used as 
input variables for further analysis of the data.  The advantage of using the principal 
components is that the new variables are not correlated and the problem of multicollinearity is 
avoided. 

 

Discriminant Analysis 

Discriminant analysis was used to identify whether significant differences existed within the 
hyperspectral data between the 5 varieties. The output of discriminant analysis are 
discriminant functions which separate out the treatments (varieties in this case) in the best 
way possible using the hyperspectral data (factor scores from PCA).  It is often the case that it 
is not possible to account for all of the differences among the treatment groups by a single 
discriminant function in which case additional discriminant functions are produced which are 
always uncorrelated with the first discriminant function. To display the results of the 
discriminant analysis, discriminant scores for each replicate are plotted to show the separation 
between treatments along the discriminant function ‘axis’. The significance of each of the 
discriminant functions was determined using Wilk’s Lambda.  A one-way ANOVA of the 
discriminant function scores followed by Tukey multiple range tests was used to identify the 
particular varieties where significant differences occurred.  

 

4.3.  Results 

Differences in NDVI 
Significant differences in the NDVI were seen between varieties on all sampling occasions 
except the earliest sample taken in 2000 (growth stage 30).  Table 4.1 shows the results of a 
one-way ANOVA. 
Table 4.1  Results of ANOVA showing differences in NDVI between varieties at each 
sampling occasion 

 Growth 
Stage 

ANOVA 

  F P 

    

28/4/1999 GS 32- 33 65.2 <0.001 

14/6/1999 GS 65 - 75 14.3 <0.001 

    

20/3/2000 GS 30   1.5 .NS 

  8/5/2000 GS 33-37 25.8 <0.001 

31/5/2000 GS 41-59 21.5 <0.001 
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The differences in NDVI between varieties are illustrated for two points in the growing 
season in Figures 4.1 and 4.2. Figure 4.1 shows that the NDVI calculated from the spectral 
reflectance data collected at GS30 is not significantly different between the five varieties.  
However, by GS 45-59 (Figure 4.2) the characteristics of the varieties were beginning to be 
more obvious and by this growth stages there were significant differences in NDVI between 
the varieties.  The main differences were in the varieties Avalon and Soissons, which are both 
extreme varieties in terms of modern wheat varieties.  Because Avalon has very large floppy 
flag leaves, the top of the canopy closes as soon as the flag leaves are fully emerged.  It would 
be expected that this might affect spectral reflectance differently from modern varieties.  
Soissons, apart from having awns, also matures earlier than the other varieties and so leaf 
senescence might be expected to be more advanced than in other varieties.  These 
characteristics would be expected to affect the spectral reflectance from the variety. Consort, 
Equinox and Shamrock are much more representative of modern commercial varieties and it 
is clear that even in the later growth stages, the differences in spectral reflectance between 
these varieties are not significant. 

 
 

Figure 4.1  NDVI with 95% confidence limits shown for five varieties at growth stage 30. 

 (20 March 2000). 
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Figure 4.2  NDVI with 95% confidence limits shown for five varieties at growth stage 45-59.  

(31 May 2000). 

ANOVA – LAI varieties differences. 
It was intended that each variety plot should have a similar canopy size, because of the 
establishment practice of sowing by seed number and then applying uniform management to 
all varieties.  Thus, the main differences between plots should be due to colour and 
architectural differences.  There are, however, potential causes of differences in LAI between 
the varieties because of differences in average leaf size.  Avalon is known to have larger 
average leaf size, whereas Soissons has a smaller average leaf size.  However, differences in 
LAI between varieties, shown in table 4.2, were not significant.   

 

Table 4.2  Results of ANOVA showing differences in LAI between varieties at each sampling 
occasion 

 Growth 
Stage 

F P 

    

28/4/1999 GS 32- 33 3.9 .036 

14/6/1999 GS 65 - 75 1.2 .369 

    

20/3/2000 GS 30   .9 .514 

  8/5/2000 GS 33-37 5.7 .012 

31/5/2000 GS 41-59 2.7 .089 
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Discriminant Analysis 
Results of the discriminant analysis are shown in Table 4.3.  No significant difference in 
spectral characteristics between the varieties was observed early in the season (growth stage 
30).  Significant differences in hyperspectral signatures were seen within later in the season. 
These effects are the same as those observed for NDVI. 

 

Table 4.3  Results of discriminant analysis for each sampling occasion 

 Growth stage Wilks' 
Lambda

Chi-
square 

df Sig. 

28/4/1999 GS 32- 33 .001 63.605 16 .000 

14/6/1999 GS 65 - 75 .000 71.080 20 .000 

20/3/2000 GS 30 .068 25.500 16 .061 

 8/ 5/2000 GS 33-37 .003 56.727 12 .000 

31/5/2000 GS 41-59 .001 64.135 20 .000 

 

 

An ANOVA of the discriminant function scores (for function 1) followed by multiple range 
tests was used to identify where significant differences occur between particular varieties.  
These results are summarised below:- 

 

28/4/99  All varieties have distinct spectral characteristics from each other except for 
Shamrock and Equinox.   

14/6/99  All varieties have distinct spectral characteristics except Shamrock and 
Soissons.  

8/5/00  Avalon and Soissons both have discrete spectral characteristics compared to 
varieties Consort, Equinox and Shamrock which form a group with similar 
spectral characteristics.   

31/5/00  All varieties have distinct spectral characteristics except for Consort and 
Shamrock which share some similar features.   

 

The differences outlined above can be seen visually by plots of the discriminant scores for 
functions 1 and 2 which are shown for each of the three sampling occasions for 2000 in 
Figures 4.1, 4.2 and 4.3.  At GS30, the differences between the varieties are again relatively 
small except for Shamrock which stands out as different from the other varieties (Figure 4.1).  
By GS 45 (Figure 4.3) the varieties are showing very different spectral characteristics, with 
differences being intermediate at GS37 (Figure 4.2).  
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Figure 4.1  Discriminant analysis of hyperspectral data for five wheat varieties at GS 30.  

 (20 March 2000) 

 

 
 

Figure 4.2  Discriminant analysis of hyperspectral data for five wheat varieties at GS 33-37.  

 (8 May 2000) 
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Figure 4.3  Discriminant analysis of hyperspectral data for five wheat varieties at GS 45-59.   

(31 May 2000) 

 

4.4  Discussion 

With either NDVI or hyperspectral data, differences between varieties at early growth stages 
(GS30-32) are either small or absent.  As varieties develop their full canopy size, differences 
affecting spectral reflectance become more apparent.    Thus, measurements taken later in 
crop growth would be confounded by varietal differences and some compensation would need 
to be made to adjust for such differences.  The use of spectral reflectance to determine canopy 
size would be used during the very early growth stages of wheat (GS30-31) so varietal 
differences would not be expected to confound the spectral reflectance measurements at this 
stage.  Similarly, detection of disease patches (e.g. yellow rust) would be more likely to be 
necessary early in crop growth (pre-GS32) so the later confounding effects of varietal 
characteristics would not come into play. 
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5.       SPECTRAL SIGNATURES OF WHEAT CROPS INDICATIVE OF 
CANOPY SIZE 

 

5.1  Introduction 

In order to manage nitrogen inputs to a wheat crop using the principles of canopy 
management, estimates of canopy size must be made at key stages during the growing season 
so that nitrogen applications can be adjusted.  The amount of nitrogen fertiliser applied at 
each stage is adjusted according to the canopy size at that stage, aiming to produce a final 
canopy size of about 6.5.  This is the optimal canopy size for a wheat crop. The mean canopy 
size across a field can be estimated visually but where variation occurs across a field it is 
necessary to continuously measure and spatially locate crop areas which may need differential 
treatment.  This cannot be done easily and lends itself to an automatic, routine remote sensing 
system which could both measure and then map variation across a field.  The map of 
variability in crop parameters could then be used to create an application map for nitrogen as 
well as other crop protection inputs such as fungicides and plant growth regulators.  The main 
decisions on nitrogen, fungicide and plant growth regulator application are normally made 
early in the growing season (March, April, May - GS 31-37).  Thus it is more important to be 
able to measure canopy size during the early growth stages of a crop.  Measurement of 
canopy size after flag leaf emergence (GS39, mid-May) is less important as most decisions on 
crop inputs have already been made. 
 
The specific objective of this section of the project is to examine the relationships between 
hyperspectral reflectance and crop canopy size in order to establish relationships that could be 
used to measure canopy size using sensed data.  Specifically, the work addresses four 
questions: 
 
1. Are there significant differences in hyperspectral reflectance spectra with canopy size?    
2. Can analysis with hyperspectral data improve on indices such as the NDVI?  The 

hypothesis underlying this is that by providing greater spectral resolution, hyperspectral 
reflectance data might be more sensitive to differences in crop canopies and therefore 
have a stronger relationship with canopy size than the simple vegetation index. 

3. Are there distinct wavelength regions of the hyperspectral data that can be identified as 
being important in predicting canopy size? 

4. Can the relationships between NDVI and canopy size or hyperspectral reflectance and 
canopy size be used to predict crop canopy size? 

 
5.2  Materials and Methods 

5.2.1.  Experimental design 

A series of field experiments were set up to provide a range of canopy sizes with concomitant 
hyperspectral reflectance data.  Experiments were set up in the growing seasons of harvest 
years 1999, 2000 and 2001.  In each year, a fully randomised block design was used with 3 
replicate plots of each of 5 nitrogen treatments and two fungicide treatments.  This was 
designed to generate plots with and without disease.  The varieties in the experiments were 
chosen to generate epidemics of single diseases.  The winter wheat varieties chosen were 
Brigadier in 1999 to generate yellow rust (Puccinia striiformis)  and Consort in 2000 and 
2001 to generate Septoria tritici.  Total nitrogen applications (as ammonium nitrate) for 
treatments 1 to 5 were 0, 80, 160, 240 and 320 kg N/ha respectively, applied as follows: 
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 early April mid/late April early May total (kg/ha) 
N1 0 0 0 0 
N2 20 30 30 80 
N3 40 60 60 160 
N4 80 80 80 240 
N5 100 120 100 320 

 
The fungicide treatments were: 

  GS31/32 GS39 GS59 Total 
F1  ……………. Untreated ………….. 0 
F2 Opus 0.67 l/ha 0.67 l/ha 0.67 l/ha 2.0 l/ha 

 Patrol 0.5 l/ha 0.5 l/ha 0.5 l/ha 1.5 l/ha 
      
Conventional agronomy/management practices were used.  Crop canopies were sampled 
throughout the growing season during 1999 and 2000.   

 

5.2.2.  LAI measurements 

A Plant Canopy Analyser (PCA, LAI-2000, Li-Cor inc. Lincoln, Nebraska, USA) was used to 
estimate green area index (GAI) of crop canopies.  It estimates GAI from light measurements 
above and below the canopies at five solid angles using a hemispherical cosine corrected 
sensor, using calculations according to Campbell and Norman (1988). 

 

5.2.3.  Spectral measurements 
High-resolution spectral reflectance measurements were taken at 4 points within each plot 
using a LICOR LI-1800 spectroradiometer.  The LICOR LI-1800 is a rapid scanning 
instrument operating over visible and near-infrared wavelengths (350 to 850 nm at 2nm 
intervals).  The LICOR LI-1800 was fitted with a cosine corrected optical head and was held 
at a height of 1m. For each plot and sampling occasion both target radiance (looking directly 
downwards) and incident irradiance (looking directly upwards) were monitored almost 
instantaneously to allow correction of reflectance for varying incident irradiance. The four 
replicate measurements were taken per plot and used to make a mean spectrum corrected for 
incident irradiance that contained 250 wavelength ‘variables’ that could then be used in the 
data analysis.  

When possible the measurements were made under conditions of stable incoming solar 
radiation, ideally under clear cloud free skies.  This aim was not always achieved owing to 
changes in weather during the length of time required to complete measurements on all 
replicate plots. The stability of incoming radiation was assessed from the time course of total 
incoming radiation obtained by integrating irradiance under each of the incoming spectral 
response curves after applying appropriate calibrations.  This allowed simple separation of 
periods of stable and unstable solar radiation.  A further check was made using the ratio of 
amounts of solar radiation in ten specified wavebands to total solar radiation to aid the 
detection of any transient changes in irradiance.  Final checks were made by comparing 
graphs of the replicate reflected spectra with the incoming radiation before and after the 
measurements on a plot. Comparison of measurements between stable and unstable periods 
showed the major cause of variation in reflected radiation between replicate measurements 
over our relatively uniform crops was variation in incoming radiation. Thus in stable periods 
the nearest in time incoming radiation was used for reflectance calculations.  In less stable 
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periods after removing incident measurements showing unstable spectra, remaining reflected 
measurements were matched to appropriate incident spectra by assuming changes occurred in 
parallel and the reflectances calculated.  All valid reflectances for a plot were averaged at 
each wavelength and the mean used for further analysis. 

 

 NDVI, which is defined as:   NDVI = (ρIR – ρR)/(ρIR + ρR) 

where ρIR and ρR are measured reflectance values in the near-infrared and red bands respectively 
was calculated using the hyperspectral reflectance data.  The average reflectance over 790-850nm 
was taken as the near-infrared reflectance and the average reflectance over 600-690nm was taken 
as the red reflectance. 

 

5.3  Statistical Analysis 

The analysis of hyperspectral data can be complex because of the simultaneous response of 
250 ‘wavelength variables’ to treatments and because these individual wavelengths are 
strongly correlated. For example, if the spectral reflectance at e.g. 650nm is high, then it is 
likely that the spectral reflectance at 648 and 652 nm will also be high. In statistical terms this 
is referred to as multicollinearity.  A correlation analysis of all the variables together would 
show many variables are correlated with each other.  This fundamental characteristic of the 
hyperspectral data has implications for the nature of the statistical analysis and interpretation 
of analysis results.  First, there is considerable redundancy in the data (the variation in the 
data set could be explained with fewer variables).  Secondly, variables may appear spuriously 
significant because they are correlated with other variables.  In order to deal with issues such 
as these, multivariate statistical methods are required (Everitt & Dunn, 1991).  The high 
degree of multicollinearity present in the hyperspectral reflectance data made it necessary to 
reduce to data to fewer, uncorrelated variables prior to data analysis.   

Principal components analysis (PCA) provides a means of creating new “variables”, or factors 
that capture the maximum amount of variability within the existing data set.  This is achieved 
by the creation of new axes within the existing data space, with the first factor positioned to 
capture the greatest spread within the data.  The second axis is then defined orthogonally in 
relation to the first. Further axes, or factors, are defined within the data space until the 
variation within the data set explained by an axis drops below a predefined threshold, as 
measured by the axis’ eigenvalue.  

PCA therefore identifies a new set of uncorrelated variables where each variable is a linear 
combination of the original hyperspectral reflectance wavelengths.  Because PCA is used 
where there is a large degree of multicollinearity, it is usually the case that a large part of the 
variation in the original data set can be explained with just a few principal components.  The 
actual number of principal components to use in the analysis can be determined using a scree 
plot or by setting limits on the eigenvalue or cumulative percentage variance explained.  

The wavelength variables that were important in forming the new principal component 
variables can be seen from the loadings – these are simple correlations between the original 
wavelength variables and the new principal component variables.  The higher the loading the 
more influential the wavelength variable was in forming the principal component and so the 
loadings can be used to interpret the meaning of the new variables, or to determine the 
underlying process that they might represent.   

The new variables resulting from the PCA can be used as input variables for further analysis 
of the data.  The advantage of using the principal components is that the new variables are not 
correlated and the problem of multicollinearity is avoided.  Once PCA had been conducted, 
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the relationship between LAI and factor scores (the output from the PCA) was then analysed 
using stepwise multiple regression.  

 

5.4  Results 

5.4.1.  Leaf Area Index 

Table 5.1  Summary of datasets and LAI ranges produced across the experimental plots 

Date Growth Stage LAI mean LAI range 

    

07/5/1999 32 2.61 2.24-3.16 

15/6/1999 65 3.35 2.37- 4.73 

    

21/3/2000 30 1.43 0.92-2.00 

30/3/2000 30 1.68 0.79-2.15 

  5/4/2000 30 1.76 1.14-2.55 

  5/5/2000 32 3.34 1.64-4.69 

  9/5/2000 33 3.48 1.40-5.45 

31/5/2000 41 2.04 4.14-5.72 

16/6/2000 61 4.42 1.91-6.03 

27/6/2000 69 5.05 2.29-7.34 

18/7/2000 78 4.36 1.66-7.39 

    

  7/3/2001  0.26 0.15-0.46 

27/4/2001 30 0.55 0.27-1.05 

23/5/2001 33 2.08 0.49-3.75 

  4/7/2001 67 2.10 0.34-4.22 

    

 

The ranges of canopy size encountered in the experiments conformed well with those that 
could be expected in commercial crops.  Figure 5.1 shows the typical benchmark figures for 
growth stage and canopy size in commercial wheat crops.  
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Figure 5.1  Benchmark growth stages and canopy size 

(from the HGCA publication ‘The Wheat Growth Guide’) 

 
5.4.2 Disease differences 

The 2 varieties chosen were Brigadier in 1999 to generate yellow rust (Puccinia striiformis)  
and Consort in 2000 and 2001 to generate Septoria tritici. Disease assessments were carried 
out at weekly intervals from mid May until the end of July.  There was limited scope for 
analysis of spectral reflectance of diseased crops as very little disease was detected, other than 
on the lower leaves (leaves 4 and 5, where the flag leaf is leaf 1).  In 1999, no significant 
disease (>5% leaf area affected) was present within the experimental plots until 15 June.  In 
2000, no significant disease was present in the crop until the final sampling occasion, 18 July.  
In 2001 septoria tritici was recorded at significant levels only on leaf 3 and 4, but only after 
flag leaf emergence in mid May.   

With the limited amount of disease present, analysis of relationship between disease effects 
and spectral reflectance concentrated on investigating whether early detection of disease 
could be identified using the spectral reflectance data.  Analysis was carried out on the 2000 
data, where disease was at very low levels throughout the majority of the growing season and 
only reached marked levels (>5%) at 18 July.  Differences in NDVI were examined between 
plots to see whether the plots where disease was present at 18 July showed any difference 
earlier in the growing season at a time when decisions about fungicide spray applications 
would be made.  The Green Leaf Area (GLA) of leaves 1, 2 and 3 within plots on 18 July was 
correlated with the NDVI of the same plots on 17 May and 31 May.  No relationship was 
observed.  

 

5.4.3.  Relationship between NDVI and LAI 

The relationship between NDVI and LAI was examined for each dataset.  The relationships 
between LAI and NDVI for the 2000 and 2001 datasets are shown graphically in Figures 5.1 
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and 5.2.  Typically, at lower LAI levels a linear relationship between NDVI and LAI was 
observed.  At higher LAI levels often a plateau in the relationship with NDVI was observed.  

Figure 5.1  (following pages) Relationship between NDVI and LAI at each sampling occasion 
in 2000.  Treatments can be identified using the following key:- 

 

Open circles (treatments 1 to 5) – no fungicide applied 

Closed circles (treatments 6 to 10) – standard fungicide applications 

 

Colours denote the level of nitrogen applied throughout the course of the experiment (for 
application dates see Methods). 

Red (0 kg N/ha),  

Yellow (80 kg N/ha),  

Blue (160 kg N/ha),  

Light green (240 kg N/ha)  

Dark green (320 kg N/ha). 
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Figure 5.1 Relationship between NDVI and LAI at each sampling occasion 
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Figure 5.1 (cont) Relationship between NDVI and LAI at each sampling occasion
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Figure 5.3  Relationship between NDVI and LAI in 2001 data where purple is sampling 

occasion 1 (7 March), green is sampling occasion 2 (27 April), brown is sampling occasion 3 
(23 May) and blue is sampling occasion 4 (4 July). 

 

Figure 5.3 shows clearly that there is a relationship between NDVI and LAI but that the 
relationship changes through the growing season, particularly as the canopy size (LAI) 
changes.  At the start of the growing season there is a linear relationship between LAI and 
NDVI.  Later in the season, after about a LAI of 2.0 is reached, the relationship reaches a 
plateau and it is no longer possible to predict LAI with NDVI alone.  A key point to the 
analysis is therefore to determine whether the use of hyperspectral data can improve on the 
prediction of LAI past this point at which the plateau is seen.   
  
5.4.4.  Detailed statistical analysis with hyperspectral data 

Detailed analysis of the relationship between hyperspectral reflectance and canopy size and a 
comparison with the relationship between NDVI and LAI was carried out on datasets from  
sampling occasions in 2000 and 2001.  This preliminary analysis took the form of an 
exploratory analysis to determine a methodology for analysis of all the datasets collected 
within this part of the project. 
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2000 data sets – comparison of NDVI and hyperspectral reflectance data 
 
The aim of the analysis is to compare the effectiveness of NDVI and hyperspectral reflectance 
data in predicting values of LAI.  These results (Table 5.2) show that there is usually an 
improved potential prediction of LAI if the hyperspectral reflectance data (summarised by 
principal components analysis) is used over the simpler NDVI. 
 
Table 5.2  Correlation between NDVI and hyperspectral data with leaf area index 
measurements throughout the 2000 growing season. 
 
Date Growth 

stage 
LAI 

range 
Linear range 
(LAI value) 

Regression with 
NDVI 

Regression  with 
Hyperspectral 

data 
    R2 % P-value R2 % P-value 

        
21/3 30 0.92-2.00 All 23 0.005 25 0.025 

30/3 30 0.79-2.15 All 18 0.011 13 N/S 

5/4 30 1.14-2.55 2.25 32 0.001 37 0.002 

5/5 32 1.64-4.69 3.5 44 <0.001 54 <0.001 

9/5 33 1.40-5.45 3.5 55 <0.001 57 <0.001 

31/5 41 4.14-5.72 3.5 28 0.002 90 <0.001 

16/6 61 1.91-6.03 4.0 66 <0.001 62 <0.001 

18/7 78 1.66-7.39 6.0 55 <0.001 51 <0.001 
 
 
 

2001 Sampling occasion 2 – Growth Stage 30 

At growth stage 30, a linear relationship was seen between NDVI and LAI (Figure 5.2) which 
was highly significant (R2 0.51, p <0.001).  This relationship allows prediction of LAI up to 
1.05. 

The results of the PCA of the hyperspectral reflectance data collected on this sampling 
occasion showed five important, uncorrelated, factors that could summarise the variation in 
the hyperspectral reflectance data.  The relative importance of each of these factors in 
describing the variation in the spectral data is shown below:- 

 Percentage variance    
explained 

Cumulative percentage 
variance explained 

Factor 1 64.51% - 

Factor 2 32.75% 97.27% 

Factor 3 2.04%  99.30% 

Factor 4 0.59%  99.89% 

Factor 5 0.03% 99.93% 

 

Factors 1 and 2 accounted for the majority of the variation in the data. 
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A stepwise multiple regression of LAI against these five factors found Factor 1 and 2 to be 
best at predicting LAI and was highly significant:-  

LAI = 0.55 + 0.009 Factor 1 + 0.0078 Factor 2 

 R2 = 0.55 p<0.001   

 

The R2 values associated with this regression equation is similar to that of the regression 
equation between LAI and NDVI.  Thus with this dataset, little difference is observed 
between use of the NDVI and the hyperspectral reflectance data. 

In order to detect the wavelength or wavelength regions of importance in predicting LAI, the 
loading of each wavelength associated with Factors 1 and 2 of the PCA were plotted (Figure 
5.3).  As the factors were uncorrelated with each other, they can be clearly seen to represent 
slightly different parts of the spectral reflectance data.  Factor 1 is linked to the wavelength 
regions 450-500 nm and 600-680nm.  Factor 2 is linked to 500-600 nm and 680-850 nm.  It is 
difficult to detect discrete areas of the spectral signatures because of the strong 
interdependence between the wavelengths.   

 

 
  

Figure 5.3  Plot of loading of each wavelength on each of Factors 1 and 2 from the PCA for 
sampling occasion 2 in 2001. 
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2001 Sampling occasion 3 – Growth Stage 33 

As can be seen from Figure 5.4, at growth stage 33 there is a non-linear relationship between 
LAI and NDVI.  Taking the part of the dataset where LAI is less than 2.5, a linear regression 
between NDVI and LAI was established which is highly significant (R2 =0.84, p<0.001). 

Above an LAI of 2.5 the relationship with NDVI reaches a plateau.  LAI is therefore not 
reliably predictable with NDVI between an LAI of 2.5 and 3.75.  The linear relationship 
between NDVI and LAI up to a LAI of 2.5 is useful in managing nitrogen applications and 
crop protection inputs.  The main nitrogen applications would be applied during this period of 
crop growth, as would the plant growth regulator applications.  The first fungicide application 
would also be applied during this period of crop growth and an estimate of LAI could be a 
useful tool in helping decision making.  Although estimating LAI above 2.5 would be useful, 
particularly in crops with large LAI values early in the season, for the majority of crops 
estimates of LAI up to 2.5 would be adequate.  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Figure 5.4  Relationship between NDVI and LAI at growth stage 33 in 2001 showing the  
extent of the linear relationship. 

 

 

Principal components analysis of the hyperspectral reflectance data found five factors of 
importance in summarising the variation in the spectral data.  The relative importance of each 
of these factors is shown overleaf:- 
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 Percentage variance    
explained 

Cumulative percentage 
variance explained 

Factor 1 90.09% - 

Factor 2 7.93% 98.03% 

Factor 3 1.86% 99.90% 

Factor 4 0.08% 99.98% 

Factor 5 0.01% 99.99% 

 

In this case, a very large amount of the variation (90%) is explained on one factor alone 
(Factor 1), with only small portions of the variation explained by the PCA factors thereafter. 

A stepwise multiple regression of these factors with LAI found a highly significant 
relationship:- 

 

LAI = 2.08 + 0.056 Factor 1 + 0.118 Factor 3 

R2 = 0.79 p<0.001 

 

This relationship is generally linear (Figure 5.5) and therefore can potentially predict LAI 
over the range 0.5-4.0 rather than only up to 2.5 as seen by the extent of the linear part of the 
relationship between LAI and NDVI. 
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Figure 5.5  Plot of the multiple regression fit of factors 1 and 3 with LAI for sampling  

at GS33 in 2001 
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In order to determine whether the wavelengths or wavelength regions of importance in 
predicting LAI using this regression equation could be determined, the wavelength regions 
associated with Factors 1 and 3 were examined using a loadings plot as shown in Figure 5.6.  
Again, no area of the spectrum was not important.  Only a small wavelength region represents 
the input of Factor 3 to this relationship.  This is not surprising as Factor 1 is so important in 
describing the variation in the spectral data, accounting for 90% of the variation and Factor 3 
explains less than 2% of the variation. 

 
 

Figure 5.6  Plot of loading of each wavelength on each of Factors 1 and 2 from the PCA for 
sampling occasion 3 in 2001. 
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6. SPATIALLY VARIABLE CANOPY SIZE AND USE IN SIMPLE       
MODELS FOR INPUT MANAGEMENT 

 
6.1  Introduction. 
 
Since the mid 1990’s the Global Positioning System (GPS), used to position vehicles on the 
farm and within fields, has been enhanced to make it more accurate.  If necessary GPS 
systems are now available that can provide centimetre accuracy.  The cost of GPS technology 
has also reduced over the past few years making it more affordable.  
 
Current agricultural computer systems allow the bringing together of advanced agronomic 
and local knowledge with a number of different technologies.  Satellite global positioning 
systems (GPS), computer Geographical Information Systems (GIS), variable implement 
technology, and combine yield-mapping systems are just a few examples.  Systems such as 
AGCOs ‘Fieldstar’ have a significant role, because they provide the farmer with the tools to 
measure and manage inputs.  Inputs such as seed, fertiliser and crop protection products can 
be varied within a field and matched to canopy size. Such computer systems also allow the 
opportunity to farmers to automate the process of creating field records providing them with 
traceability which is rapidly becoming an important feature of marketing farm produce. 
 

The ability to variably apply nitrogen and crop protection inputs relies on having a map of the 
treatable area showing the variability in the factor which affects the crop input.  Canopy size 
is one key factor which affects many key inputs.  The ability to measure and map variation in 
canopy size across fields would allow the generation of application maps for several crop 
protection inputs according to rules, some simple, some complex.  

 
There are many potential benefits of on-board computer technologies and spatially applied 
crop inputs: 
 
• By applying nitrogen fertiliser spatially according to the needs of the crop nitrate leaching 

into watercourses may be reduced. 
 

• By spatially applying agrochemicals as and when they are required pesticide residues are 
reduced and kept to a minimum. 
 

• By applying farm waste, like slurry and farm yard manure, according to a pre-defined 
application map there is less chance that mistakes are made during spreading - mistakes 
that could result in run-off into water courses. 
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The  representation below shows how systems such as Fieldstar can use spatial data about a 
crop to variably apply crop inputs and record those inputs for traceability purposes.    
 
                .         

Application Plan

190 kg/ha

170 kg/ha

180 kg/ha

190 kg/ha

Application
Record - 

“As applied map”

Field record

 
 

Using IT systems such as the AGCO ‘Fieldstar’ to create field records and traceability will 
almost certainly play an ever-increasing role in farm businesses in the near future. 
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Mapping of canopy using plant canopy analyser and GPS 
 
To illustrate the potential for using canopy size estimates within a field to adjust crop inputs 
the variation in crop canopy was measured in a field at ADAS Terrington in 1999.  A 
systematic grid of sampling points was designed (Figure 6.1) and measurements of plant 
canopy size were taken at each of these sampling points throughout the season. 

 
An example of the type of map generated from these data is shown in figures 6.2.  The map 
could be used to vary crop inputs in a crude way, as represented in figure 6.2 but with the 
use of simple models crop inputs could be adjusted in a more systematic way.  Examples of 
the types of simple models that could be incorporated into such a system are given in section 
6.2. 
   

 
Figure 6.1  Sampling points for spatial measurements taken 
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Figure 6.2  Map of GAI at GS32 derived from canopy measurements. 

 

 
Figure 6.3  Typical recommendations which could be applied using the GAI map 
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6.2  Simple model using spatial data to assist in decision making on crop inputs 

The main factors affected by crop canopy size on crop inputs are: 

1.  Nitrogen fertiliser 

2.  Plant Growth regulators 

3.  Fungicides 

A typical map of GAI, such as shown in figure 6.2 could be used to create an application map 
for these inputs at different stages of crop growth.  Typical scenarios are described below. 

 

6.2.1  Nitrogen planning using GAI maps 

This example assumes nil soil mineral N available in the spring. 

 

Table 6.1 Nitrogen decisions at GS30 based on crop GAI 

First N decision stage:  Crop Growth Stage GS30-31 

Current GAI Target for max. 
GAI 

Total N required 

(kg/ha) 

1st N application rate 

(kg/ha) 

1.0 6.0 250 125 

2.0 6.0 200 100 

3.0 6.0 150 75 

 

 

Table 6.2 Nitrogen decisions at GS33 based on crop GAI 

Second N decision:  Crop Growth Stage GS33 

Current GAI Target for max. 
GAI 

Planned N rate 

(kg/ha) 

2nd N application rate 

(kg/ha) 

4.0 6.0 125 100 

5.0 6.0 100 50 

6.0 6.0 75 Nil 

 

At GS30-31 the variation in GAI across a field could be used to determine the total nitrogen 
requirement for each ‘area’ of the field (whether these are spreader widths or blocked areas of 
the field).  This total nitrogen requirement will depend on the GAI of the crop at that stage.  
When GAI is mapped later (at GS33) this could allow more precision in the nitrogen 
requirement of different areas of the crop.  Such variation can arise with variation in soil 
mineral nitrogen across the field, soil type differences, nitrogen uptake variation etc.  Table 
6.2 shows how the ‘planned’ nitrogen application could be modified following measurement 
of GAI at GS33. 

These modified nitrogen application rates could result in cost savings to the farmer. 
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6.2.2  Plant Growth Regulator planning using GAI maps. 

Decisions similar to those involving nitrogen could be made for plant growth regulator use as 
outlined below.  The example assumes a high risk lodging variety. 

 

Table 6.3 Plant growth regulator decisions at GS30 based on crop GAI 

Plant Growth Regulator decision:  Crop Growth Stage GS30 

 

GAI Plant Growth Regulator programme 

1.0 Nil 

2.0 Cycocel 

3.0 Cycocel split (x2) +/-  Terpal 

 

This assumes the principle that the higher GAI areas will have higher plant populations and 
therefore be at higher risk of lodging.  Low GAI areas will have low plant populations and 
thus very low risk of lodging. 

 

6.2.3  Fungicide planning using GAI maps. 

Decisions similar to those involving nitrogen could be made for fungicide use as outlined 
below.  The example assumes a high disease risk variety. 

 

Table 6.4 Fungicide decisions at GS30 based on crop GAI 

 Fungicide Decisions:  GS32 
 

GAI Fungicide programme GS32 

2.0 Strobilurin (0.5 label dose) + triazole 0.25 label dose 

3.0 Strobilurin (0.3 label dose) + triazole 0.35 label dose 

4.0 Strobilurin (0.3 label dose) + triazole 0.5 label dose 

 

Table 6.5 Fungicide decisions at GS39 based on crop GAI 

Fungicide Decisions:  GS39 
 

GAI Fungicide programme GS39 

5.0 Strobilurin (0.75 label dose) + triazole 0.25 label dose 

7.0 Strobilurin (0.5 label dose) + triazole 0.35 label dose 

9.0 Strobilurin (0.5 label dose) + triazole 0.5 label dose 

 

This range of fungicide programmes relies on the principle that in crops with low GAIs the 
lower leaves contribute more to grain filling than in crops with high GAIs.  Leaves 3 and 4 in 
particular contribute more to yield and it is these leaves which are affected most by strobilurin 
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fungicides applied at GS32, being kept green for longer than under a non-strobilurin 
programme.  Thus, in crop areas with lower GAIs a higher rate of strobilurin is used at GS32.  
The main fungicide spray timing decision at GS39 is less affected by GAI but a similar 
principal applies.  The crop areas with a sub-optimal GAI of 5 cannot afford to lose any green 
area – and thus need a higher dose of strobilurin.  Areas of high GAI are less likely to be 
affected by loss of green area and can tolerate more disease.  Thus, the rate of strobilurin 
required is lower in these areas. 

Variation in fungicide dose according to canopy size. 

There is a school of thought which argues that the dose of fungicide applied to a crop should 
vary depending on the size of the canopy to which it is applied.  This is because as the crop 
canopy increases, the total amount of active ingredient delivered to a unit area of leaf will 
decrease.  In order to compensate for this dilution effect, in larger canopies a higher dose of 
fungicide would be applied.  Recent HGCA-funded work (HGCA Project Report No. 277 –  
Optimising fungicide application according to crop canopy characteristics in wheat) suggests 
that there may be potential to improve the use of fungicides by matching applications to crop 
growth stage.  If canopy size could be measured remotely and mapped, then this map could be 
used to vary the dose of product applied.  This theory has not been tested fully and further 
development work would be needed before recommendations could be made. 
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7.  TECHNOLOGY TRANSFER ACTIVITIES 
The project created considerable interest amongst both the farming community and the 
agricultural industry in its wider sense.  During the first 2 harvest years of the project (1999 
and 2000) the results of the project were demonstrated and discussed on the HGCA research 
demonstration areas at the Cereals 99 and Cereals 2000 events. Crops magazine ran a series 
of ‘Research in Focus’ articles which were later bound together into a handout for the Cereals 
event. 

 

Figure 7.1  Handout for Cereals 2000 event showing article on remote sensing potential 

 

The project was reported on several occasions in the farming press, mainly Farmers Weekly 
and Crops, throughout the duration of the project. 
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Figure 7.2  National Cereals 2000 event 

 

 

 
Figure 7.3  Article in Agriculture LINK magazine 
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Conference presentations: 
 
The project helped to bring a UK focus to remote sensing in agriculture and members of the 
project organised the ‘Remote Sensing in Agriculture’ conference at the Royal Agricultural 
College, Cirencester, 2000. This was attended by most of the leading researchers in remote 
sensing from around the world.  The delegates from the conference are shown in figure 7.4. 
below. 

 
Figure 7.4   Delegates at the Remote Sensing in Agriculture conference 2000 

The conference proceedings were published by the AAB in Aspects of Applied Biology 60, 
Remote Sensing in Agriculture. Two papers from the project were presented and published: 

The role of remote sensing technologies in UK arable production.  R.J. Bryson, J. Clark, W. 
S. Clark. 

Statistical analysis of hyperspectral data: examples from the SPARTAN project.  A.E. Riding, 
R.J. Bryson. 
 
The project team also presented papers at the SCI conferences held in January 2001 and 2002: 
 
SCI Conference January 2001  “In field monitoring of soil and crop factors” M Steven, 
University of Nottingham. 
 
SCI Conference January 2002   “Optical and radar sensing of wheat crops to aid management 
decisions”  P Dampney, ADAS Boxworth. 
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Figure 7.5  Conference proceedings from Remote Sensing in Agriculture conference, 2000 
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